浅埋隧道地震动力响应数值模拟分析

目录

1 FssiCAS 图形界面操作——前处理
1.1 导入网格和背景线
1.2 添加边界条件
1.3 水动力边界条件设置
1.4 Step 1 时间步
1.4.1 设置材料参数
1.4.2 设置重力加速度场
1.4.3 设置求解器类型10
1.4.4 设置时间步10
1.5 Step 2 时间步1
1.5.1 设置 Step 2 的材料参数12
1.5.2 设置 Step 2 重力加速度场13
1.5.3 设置 Step 2 的求解器13
1.5.4 设置 Step 2 的时间步13
1.6 Step 3 时间步13
1.6.1 设置 Step 3 的材料参数13
1.6.2 设置 Step 3 重力加速度场15
1.6.3 设置 Step 3 的求解器15
1.6.4 设置 Step 3 的时间步16
1.7 Step 4 时间步17
1.7.1 设置 Step 4 的材料参数17
1.7.2 设置 Step 4 重力加速度场19
1.7.3 加载自定义地震波
1.7.4 设置 Step 4 的求解器
1.7.5 设置 Step 4 的时间步22
1.8 设置初始条件
1.9 计算
2 FssiCAS 图形界面操作——后处理22
2.1 加载文件
2.2 绘制分布图24

1 FssiCAS 图形界面操作——前处理

本案例用于研究模拟分析隧道位于浅层可液化土体工况下的地震动力响应及稳定性。

浅埋工况1		水深32.1m
淤泥质粉质粘土	<u>7.86</u> m	
粉细砂		

图 1-1 浅埋隧道工况示意图

数值模拟模型求解区域为 200m×100m, 隧道直径 16m 。认为隧道是不透水介质,因此仅设置固体网格,地基土为孔隙介质,设置固体、流体网格。隧道浅埋工况下,由于表层可液化地基土、结构物、地震动力的相互作用更为复杂,对计算精度要求更高,因此固体单元采用 8 节点四边形网格,流体单元采用 4 节点四边形网格。浅埋工况的单元数量 38328,节点数量 151783 。隧道附近网格尺寸为 0.15m,远离隧道的地基土网格尺寸为 1.5m,期间网格尺寸渐变过渡。模型边界条件设置,在左右两侧设置周期性边界保证位移、孔压一致,以减弱边界处的地震波反射效应;底部水平竖直方向固定;顶部设置相应深度的静水水位水动力边界条件。网格划分情况如图所示。

图 1-2 浅埋工况网格划分示意图

1.1 导入网格和背景线

点击 FssiCAS—Preprocess—Load Mesh, 在弹出的文件选择对话框中选择 Gid 输出的网格 文件, 双击或点击打开 MESH_AF 文件。

在弹出的对话框中设置单元节点阶次,由于材料 345 隧道为不透水介质,因此仅设置固体 网格,1267 地基土为孔隙介质,设置固体、流体网格。如图 1-3 所示。由于本案例中固体节 点采用四边形八节点单元,S. Node 默认为 8。因为有流体作用,所以流体节点阶次设置为 1,点击 Ok 按钮确认选择,如图 1-3 所示。

 ★ 快速访问 ■ 桌面 ↓ 下载 ※ 図片 appi 	名称 名称 名称 本 本 本 本 本 本 本 本 本 本 本 本 本	修改日期 2023/4/4 15:32 2023/4/4 17:11 2023/3/31 11:03 2023/4/1 22:50 2023/4/4 15:32	类型 文件夹 文件夹 IGES 文件 文件 FSSICAS	大小 4 KB 7,000 KB 0 KB	
si Load Mesl	1			?	×
	Solid Node	Element Type		Fluid Orde	r
Material-1	8	Solid Element		1	
Material-2	8	Solid Element	•	1	
Material-3	8	Solid Element	v	0	
Material-4	8	Solid Element		0	
Material-5	8	Solid Element		0	
Material-6	8	Solid Element		1	
Material-7	8	Solid Element		1	
		<u></u>			
				C	k

图 1-3 流体节点阶次界面

点击 Preprocess—Load Background—Outer Boundary,在弹出的文件选择对话框中选择*.iges 背景 线文件,双击或点击打开按钮,如图 1-4 所示。

reProcess											V P	reProc
∃-∰ LoadMesh Gid	Mode										Mes	h Visu
HyperMesh Gmsh	+Xy-Xy	😼 Choose Iges File.										×
- Ansys ∋- ↓ LoadBackground	+XZ-XZ	$\leftarrow \rightarrow \checkmark \uparrow$	> 此电脑 :	data (E:) > SL >	suanli2		~	Ö	在 suanli2 中	搜索		٩
- 🗞 Outer Boundary		组织▼ 新建文件	夹									0
Materials				. ,	、 、	1001 0010	And Miles					•
- Material 2	Eaw	🗸 🔍 此电脑	· 名和	F		修改日期	类型		大小			
Material 3	202) 🧊 3D 对象		Results		2023/4/4 15:32	文件夹					
- Material 4	W. J.F.	10465		Temp		2023/4/4 17:11	文件夹					
Material 5				dijitu iges	创建日期: 2023/4/4	4 35:39/3/31 11:03	IGES 文件		4 KB			
Material 7) 🔤 图片		ujituiges	大小: 46.0 MB	2020/0/01 11100	1000 211		1100			
Boundary Conditions		📄 文档			文件: Data_BeamP	lateShellCell,						
- Loads		> 🦊 下载										
⊟ HydroDynamics		> 音乐										
Relation Water												
Stokes wave		】 黒山										
- AeroDynamics		🛛 🐛 poook (C:)										
- Fluctuating Wind		🗸 🧹 🕹 🕹										
FAST		Jata (E:)										
□ Earthquake		Ctai (E)	~									
- No Earthquake				[
Earthquake Library			文件名(N):	dijitu.iges				~	Bound(*.igs	*.iges)		\sim
- National Standard									打开(0)		取消	
UserDefined									31/(0)		-MAINS	
E Field Quantity	L											

图 1-4 加载外背景线 (Outer Boundary) 的步骤示意图

图 1-5 加载完成模型图

1.2 添加边界条件

模型边界条件设置,在左右两侧设置周期性边界保证位移、孔压一致,以减弱边界处的地震波反射效应,底部水平竖直方向固定,顶部设置相应深度的静水水位水动力边界条件。

首先,依次点击左上角工具栏中图标 7 和 按钮,进入背景线选择模式。通过点击键盘 'R' 键,进入边界选择模式,当单击边界线被选择线变亮时,右击鼠标后设置约束,具体操作如图 2-5 。

		Fssi Boundary Apply X
		BC Name: BC-1
Displacement	Apply	Constant Constant Displacement
🔊 Pore Pressure	►	☑ X Dof 0
🕂 Force	•	Y Dof 0
🚟 Flux	•	
Distribution Pressure	•	Time Dependent
ight Fluctuating Wind Pressure	•	
🚟 Flow Velocity	•	X Dof
	•	Y Dof
UserDefined	•	
ts: 3832 ↔ Periodic Condition	• 6167 F-Node	OK
الخطر	나파바카카	

(底部水平竖直方向固定)

在左右两侧设置周期性边界保证位移、孔压一致,以减弱边界处的地震波反射效应,添加周期性边界的时候,首先选择一条边(左边),按下 Periodic Condition—Apply,跳转出信息界面,点击 ok 之后,选择另一条边(右边),按下回车(Enter键)即可。

(左右两侧设置周期性边界)

图 2-5 选择边界线添加边界条件

1.3 水动力边界条件设置

本案例顶部设置相应深度的静水水位水动力边界条件,如图 1-6 所示

图 1-6 顶部设置水动力边界

e Loads	Fssi Coupled Way	×
Hydrobynamics S No Hydro S Stokes Wave S Accolor Stoke Wave S Stokes S Stokes Wave S Stokes	Stokes Wave Type: Wave Period (s) : Wave Height (m) : Water Depth (m) : SWL Position (m) :	1st Wave 7 0 32.1 132.1 OK

图 1-7 波的参数信息设置界面

1.4 Step 1 时间步

1.4.1 设置材料参数

通过点击 FssiCAS—Preprocess—Material—Material 1/ Material 2,用户可以自行更改材料名称,设置材料参数。Material 267 材料参数一样,35材料一样,各材料参数如下图 1-8。

Material 1						-		
Material Name			粉细砂					
Constitutive Mode	el:		Elastic					
Succeed			No Succe	eed				
Initial Stress Tens	ile			Yes				
Constitutive Model P	aramete	rs:						
Young's Modulus (Pa):	1e8							
Poisson's Ratio :	0.3							
— Dampmod Model Par	ameters	:						
Dampmod Model:				ELASTI	С			
Young's Modulus (Pa):	0							
Poisson's Ratio:	0							
Damping Coefficient:	0							
Permeability Ty		Constant		$K/K_0 = 1$				
Material Parame	eters:							
Solid Particle Bulk Mode	ulus (Pa):	1.0E+20		Saturation (0-1):	▼ 1			
Granular Density (kg/m ^ª	^s):	2700		Fluid Density (kg/m³):	1000			
Void Ratio:		0.69		Permeability x(m/s):	1e-5			
				Permeability y(m/s):	1e-5			
Parameters unde	er the l	Experimen	tal En	vironment:				
Gravity (m/s²):		9.81						
			• 1 •	火人を用てた、				

(Material 1-粉细砂)

laterial Ivalle		淤泥质粉质粘土
Constitutive Mode	1:	Elastic
Succeed		No Succeed
nitial Stress Tensi	ile	Yes
-Constitutive Model Pa	arameters:	
Young's Modulus (Pa): 1	e8	
Poisson's Ratio : 0	.3	
Dampmod Model Par	ameters:	
Dampmod Model:		ELASTIC
Young's Modulus (Pa):	0	
Poisson's Ratio:	0	
Damping Coefficient:	0	
Permeability Ty]	Constant	$K/K_0 = 1$
Permeability Ty	Constant	$K/K_0 = 1$
Permeability Ty Material Parame	Constant ters:	$K/K_0 = 1$
Permeability Ty [Material Parame Solid Particle Bulk Modu	Constant ters: Ius (Pa): 1.0E+20	$K/K_0 = 1$ Saturation (0-1):
Permeability Ty Material Parame Solid Particle Bulk Modu Granular Density (kg/m ³	Constant ters: uus (Pa): 2700	$K/K_0 = 1$ Saturation (0-1): Fluid Density (kg/m ³): 1000
Permeability Ty Material Parame Solid Particle Bulk Modu Granular Density (kg/m ³ Void Ratio:	Constant ters: Ilus (Pa): 1.0E+20): 2700 1.07	$K/K_0 = 1$ Saturation (0-1): 1 Fluid Density (kg/m ³): 1000 Permeability x(m/s): 1e-7
Permeability Ty Material Parame Solid Particle Bulk Modu Granular Density (kg/m ³ Void Ratio:	Constant ters: Ilus (Pa): 1.0E+20): 2700 1.07	K/K_0 = 1Saturation (0-1):1Fluid Density (kg/m³):1000Permeability x(m/s):1e-7Permeability y(m/s):1e-7
Permeability Ty Material Parame Solid Particle Bulk Modu Granular Density (kg/m ³ Void Ratio: Parameters unde	Constant ters: Ilus (Pa): 1.0E+20): 2700 1.07 r the Experim	K/K ₀ = 1 Saturation (0-1): Fluid Density (kg/m ³): 1000 Permeability x(m/s): 1e-7 Permeability y(m/s): 1e-7 Anticle State Anticle State

注: Material 2\6\7 虽然材料参数一样,但是取名必须区分开, Material 2 对应淤泥质粉质粘土 1, Material 6 对应淤泥质粉质粘土 2, Material 7 对应淤泥质粉质粘土 3。

Material 3		- 🗆 X	si Material 5	-	- 0
Material Name	隧道桥墩	^ ^	Material Name	隧道外壁	
Constitutive Model:	Elastic	▼	Constitutive Model:	Elastic	
Succeed	No Succeed	v	Succeed	No Succeed	
Initial Stress Tensile	Yes	▼	Initial Stress Tensile	Yes	
Constitutive Model Parameters:					
Young's Modulus (Pa): 4e10			Young's Modulus (Pa): 4e10		
Poisson's Ratio : 0.2			Poisson's Ratio : 0.2		
Dampmod Model Parameters:			Dampmod Model Parameters:		
Dampmod Model:	ELASTIC	V	Dampmod Model:	ELASTIC	
Young's Modulus (Pa): 0			Vouna's Modulus (Pa)		
Poisson's Ratio: 0			Paissan's Patia		
Damping Coefficient: 0			POISSON'S KATIO: U		
[Damping Coefficient: 0		
Material Parameters:			Matavial Davamatava		
Solid Particle Bulk Modulus (Pa): 10F+	+20		Material Parameters:		
Granular Density (kg/m ³):			Solid Particle Bulk Modulus (Pa): 1.0E	:+20	
Void Pation			Granular Density (kg/m ³): 250	0	
			Void Ratio: 0.01		
Parameters under the Expe	erimental Environment:		Parameters under the Exp	erimental Environment:	
Gravity (m/s ²): 9.81		~	Gravity (m/s ²): 9.81		

(Material 3\5-隧道桥墩\隧道外壁)

Material 4			_	
Material Name		隧道内壁		
Constitutive Mod	el:	Elastic		
Succeed		No Succeed		
nitial Stress Tens	ile	Yes		•
—Constitutive Model P	arameters:			
Young's Modulus (Pa):	1e10			
Poisson's Ratio :	0.2			
Dampmod Model Pa	rameters:			
Dampmod Model:		ELASTIC		▼
Young's Modulus (Pa):	0			
Poisson's Ratio:	0			
Damping Coefficient:	0			
Material Parame	eters:			
Solid Particle Bulk Mod	ulus (Pa): 1.0E+20			
	2			
Granular Density (kg/m	2500			
Granular Density (kg/m Void Ratio:	0.01			
Granular Density (kg/m [*] Void Ratio: Parameters unde	2500 0.01 er the Experime	ental Environment:		

(Material 4-隧道内壁)

图 1-8 材料参数设置

1.4.2 设置重力加速度场

点击 FssiCAS—Preprocess—Load—Filed Quantity—Uniform Field,为整个案例施加重力载荷。 即加速度场的 X 方向为 0 m/s², Y 方向为 -9.806 m/s²,如图 1-9 所示。Step 2、Step 3 和 Step 4 的重力场在新建时间步时后自动复制当前时间步的设置,因此后续时间步不再重复施加加速度场。

National Standard UserDefined Field Quantity	Field Quantity	×
No Acceleration Field Uniform Acceleration Field Centrifugal Acceleration Field Solver Time Step Step 1 Sub Step 1	Acceleration (m/s ²) X: 0 Y: -9.81	
Sub_Step 1	OK Cancel	

图 1-9 重力加速度设置

1.4.3 设置求解器类型

点击 FssiCAS—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,Step1的求解器类型及其参数设置如图 1-10 所示。

Solver Setup					×	
Solver	Sta	tic 💌	[Drained		
Parameters						
Rotation		Non-Rotation				
Stiffness Matrix Symmetry			No			
Iterative Convergence Criteria		0.01				
Maximum Subdivision	Number	100				
Property Updation		Nor				
Analysis Type		2D-Plane Strain				
Restart File Written		Yes				
Deformation to 0 in Re	estart File	Yes				
Displacement Succeed	I	Yes				
NBFGS		1				
Sparse Solver Type		Direct Sparse Solver (LU)				
Parallel Method		CPL	J OpenN	1P		
CPU Parallel Threads		4				
				Ok		

图 1-10 求解器类型及相关参数设置界面

1.4.4 设置时间步

通过点击 FssiCAS—Time Step—Step1—Sub_Step1设置时间步。

Simulation Time (s)为计算总时间,设置为 1 s; Interval for Time Steps (s)为时间步长,设置为 0.5 s; Interval for Updating Coordinate (s)为坐标更新时间,设置为 1.1 s (大于计算总时间,意为不 更新坐标); Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为 1.1 s (不更 新刚度矩阵); Maximum Iterations 为每个时间步最大迭代次数,设置为 10 步; Restart File Step (s) 为输出重启文件的时间,设置为 1.1 s (不生成重启文件); Output Time Step (s)为输出某一时刻所 有节点/高斯点上的位移、应力、应变等结果文件的时间间隔,设置为每 0.5 s 输出一次结果文件; Results Output 为选择输出节点上的结果; History Plot Interval (s)为输出特定的节点或单元上的应 力、应变等结果文件的时间间隔,设置为每 1.1 s 输出一次(意为不输出)。 α , β_1 , β_2 为时间系数, 保持默认值即可。具体设置如图 1-11 所示。

ssi Time Step	? ×
Sub Step 1	
Parameter	
Simulation Time (s)	1
Start Time of Current Step (s)	0
Interval for Time Steps (s)	0.5
Interval for Updating Coordinate (s)	1.1
Interval for Updating Global Stiffness Matrix (s)	1.1
Maximum Iterations	10
Restart File Output Interval (s)	1.1
Results File Output Interval (s)	0.5
Results Output	On Nodes 🔻
State Variables Output	No
Results Sequence	Manage
Results Format	Binary 🔻
History Output Interval (s)	1.1
α	0.6
β1	0.605
β2	0.6
Cre	ate Delete

□- Step2 □- Sub_Step 1 □- Step3	F _{ss} Initial State ×
└─ Sub_Step 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Solver: Static Type: Generate Initial File 💌
e → Initial State	Set initial state to Zero Yes
	Ok

图 1-12 设置初值

1.5 Step 2 时间步

为了修正 Step 1 的初始应力和稳态渗流,更好地衔接后续动力响应分析,在 Step 2 时间步中,土体采用一般线性弹性本构模型(General Elastic),求解器选择Static。

Step 1 设置完毕后,点击 按键添加 Step 2, Step 2 会自动复制 Step 1 的所有设置,点击

按键 选择 Step 2 进入 Step 2 设置界面。本小节只展示 Step 2 需要修改的与 Step 1 不同的设置。

图 1-12 增加时间步的步骤示意图

1.5.1 设置 Step 2 的材料参数

通过点击 FssiCAS—Preprocess—Material—Material 1/Material 2/Material 3等,用户可以自行 更改材料名称,设置材料参数。Step 2 的各材料参数设置如图 1-13 所示。

以下所有 Step 2 3 4 步的材料参数中 Material Parameters 部分自动继承 Step 1 设置,故后 续 Material Parameters 部分不附截图。

Material Name	粉细砂	
Constitutive Model:	General Elastic	
Succeed	No Succeed	
Initial Stress Tensile	No	
- Constitutive Model Parameters:		
Bulk Modulus K ₀ (Pa):	6	
Shear Modulus G ₀ (Pa): 40E	6	
Mean Effective Confining Stress P ₀ (Pa): 100	000	
Maximum Stress Ratio: 1.2	71	
Type of Variation for Bulk Modulus:	Linear	
Type of Variation for Shear Modulus:	Linear	
Coulomb Envelope and Tension Cutoff:	Applied	
Cohesion (Pa):	0	
— Dampmod Model Parameters: —		
Dampmod Model:	ELASTIC	
Young's Modulus (Pa): 0		
Poisson's Ratio: 0		
Damping Coefficient: 0		

(Material 1 - 粉细砂)

Material Name	 淤泥	
Constitutive Model:	General Elactic	
Constitutive widder.	General Liastic	*
Succeed	No Succeed	•
Initial Stress Tensile	No	•
Constitutive Model Parameters:		
Bulk Modulus K ₀ (Pa):	0E6	
Shear Modulus G ₀ (Pa):	0E6	
Mean Effective Confining Stress P ₀ (Pa):	00000	
Maximum Stress Ratio:	.103	
Type of Variation for Bulk Modulus:	Linear	•
Type of Variation for Shear Modulus:	Linear	v
Coulomb Envelope and Tension Cutoff:	Applied	
Cohesion (Pa):	0	
— Dampmod Model Parameters:		
Dampmod Model:	ELASTIC	

- Dampinou Mouer Fara	ineters.			
Dampmod Model:			ELASTIC	
Young's Modulus (Pa): Poisson's Ratio:	0			
Damping Coefficient:	0			
Permeability Ty]	Constant	V	$K/K_0 = 1$	

(Material 2\6\7 - 淤泥质粉质粘土) 图 1-13 Step 2 材料参数设置

Material 3 4 5 均不发生变化,继承 Step 1 的材料参数。

1.5.2 设置 Step 2 重力加速度场

重力场在 Step 1 中已经添加,新建时间步时后自动复制当前时间步的设置,因此后续时间步不 再重复施加加速度场。

1.5.3 设置 Step 2 的求解器

点击 FssiCAS—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,Step 2 的求解器类型及其参数设置跟 Step 1 设置一致。

1.5.4 设置 Step 2 的时间步

Step 2 的时间步设置与 Step 1 设置一致。

Step 3 时间步 1.6

1.6.1 设置 Step 3 的材料参数

Step 3 阶段, 求解器选择 Dynamic, 弹性海床选择可以更好地描述砂的动态力学行为的

_		
	Step3	V
	Step 1	
Soil-	Step2	
_	Step3	
ł	Stop/	

PZIII 本构模型。Step 2 设置完毕后,点击 一级按键添加 Step 3,点击按键 Step 3 选择

 Step 3 进入 Step 3 设置界面。设置材料参数。Step 3 的各材料参数设置如图 1-14 所示。

 Material 1

Materia	l Name	[粉细砂			
Constitu	ıtive Mode	l: [Pastor-Zienkiewicz Mark III			
Succeed	l	[No Succeed			•
Initial S	tress Tens	ile [No	
Constit	utive Model Pa	arameters:				
Mg:	1.44		Mf		1.271	
α _g :	0.485		α _f :		0.485	
K _{evo} (Pa):	5.48e6		Ger	_{so} (Pa):	10.95e6	
β ₀ :	4.2		β1:		0.2	
H ₀ :	41.06		Hu	u _o (Pa):	4e7	
γ:	2		γp	м:	4	
P ₀ ' (Pa):	100000					
Variation	Туре:					
		Bulk and She	ear Modulu	s Vary I	inearly	
Dampn	nod Model Par	ameters:				
Dampmo	d Model:				ELASTIC	
Vermela		0				
roung s	Modulus (Pa):					
Poisson	's Ratio:	0				
Dampir	ng Coefficient:	0				
L						
Perme	ability Ty	Constant	▼		$K/K_0 = 1$	

(Material 1 - 粉细砂)

Material Name		淤泥质料	分质粘土			
Constitu	ıtive Mode	l:	Pastor-Zienkiewicz Mark III			
Succeed			No Succeed			
Initial S	tress Tensi	ile	No			
-Constitu	utive Model Pa	arameters:				
M _g :	1.14			M _f :	1.103	
α _g :	0.276			α _f :	0.276	
K _{evo} (Pa):	5.5e6			G _{eso} (Pa):	10.13e6	
β ₀ :	4.2			β ₁ :	0.2	
H₀:	29.93			Hu _o (Pa):	4e7	
γu:	2			үрм:	4	
P ₀ ' (Pa):	100000					
Variation	Туре:					
		Bulk and Sh	near Moo	lulus are C	onstant	•
Dampm	od Model Par	ameters:				
Dampmo	d Model:				ELASTIC	v
Voungia	Madulus (Da)	0				
Young s	wodulus (Pa):					
Poisson	s Ratio:	0				
Dampin	g Coefficient:	0				
Perme	ability Ty]	Constant			$K/K_0 = 1$	

(Material 2\6\7 - 淤泥质粉质粘土1\2\3)

图 1-14 Step 3 材料参数设置

Material 3 4 5 均不发生变化,继承 Step 1 的材料参数。

1.6.2 设置 Step 3 重力加速度场

重力场在 Step 1 中已经添加,新建时间步时后自动复制当前时间步的设置,因此后续时间步不 再重复施加加速度场。

1.6.3 设置 Step 3 的求解器

点击 FssiCAS—Preprocess—Solver—Solver Type, 在弹出对话框中设置求解器类型, Step 3 阶段, 求解器选择 Dynamic, 如下图 1-15。

Solver Setup

Solver	ynamic Drained
Parameters	
Rotation	Non-Rotation 🔻
Stiffness Matrix Symmetry	Yes 🔻
Iterative Convergence Criteria	a 0.01
Maximum Subdivision Numb	er 100
Property Updation	Non-Updated 🔻
Analysis Type	2D-Plane Strain 🔻
Restart File Written	Yes 🔻
Deformation to 0 in Restart F	ile Yes 🔻
Displacement Succeed	Yes 🔻
NBFGS	1 🔍
Sparse Solver Type	Direct Sparse Solver (LU)
Parallel Method	CPU OpenMP 🔻
CPU Parallel Threads	4
	Ok

Х

图 1-15 Step 3 求解器设置

1.6.4 设置 Step 3 的时间步

Step 3 的时间步设置如下图所示。

ssi Time Step	? ×
Sub Step 1	
Parameter	
Simulation Time (s)	1
Start Time of Current Step (s)	0
Interval for Time Steps (s)	0.1
Interval for Updating Coordinate (s)	1.1
Interval for Updating Global Stiffness Matrix (s	s) 1.1
Maximum Iterations	30
Restart File Output Interval (s)	1.1
Results File Output Interval (s)	0.1
Results Output	On Nodes 🔻
State Variables Output	No 🔻
Results Sequence	Manage
Results Format	Binary 💌
History Output Interval (s)	1.1
α	0.6
β1	0.605
β2	0.6
Cr	reate Delete

图 1-16 Time Step3 相关参数设置界面

1.7 Step 4 时间步

1.7.1 设置 Step 4 的材料参数

Step 4 阶段, 求解器选择 Dynamic, 弹性海床选择可以更好地描述砂土的动态力学行为的

 PZⅢ 本构模型。Step 3 设置完毕后,点击 ● 按键添加 Step 3,点击按键 Step 4
 4 进入 Step 4 设置界面。设置材料参数。Step 4 的各材料参数设置如图 1-17 所示。 以下所有Step 4 材料参数中 Material Parameters 部分和 Step 1 一致,没有改变,故不附截

以下所有Step 4 材料参数中 Material Parameters 部分和 Step 1 一致,没有改变,故不附截图。

Materia	l Name 粉细砂					
Constitu	ıtive Mode	l:	Pastor-Zienkiewicz Mark III			
Succeed			No Succeed			▼
Initial S	tress Tensi	le	No			•
Constitu	utive Model Pa	rameters:				
M _g :	1.44			Mf	1.271	
α _g :	0.485			α _f :	0.485	
K _{evo} (Pa):	5.48e6			G _{eso} (Pa):	10.95e6	
β ₀ :	4.2			β ₁ :	0.2	
H ₀ :	41.06			Hu ₀ (Pa):	4e7	
γ _u :	2			үрм:	4	
P ₀ ' (Pa):	100000					
Variation	Туре:					
		Bulk and Sh	ear Mo	dulus Vary I	inearly	•
Dampm	od Model Para	ameters:				
Dampmo	d Model:				ELASTIC	•
Young's	Modulus (Pa):	2e6				
- Poisson'	s Ratio:	0.3				
Dampin	a Coefficient:	0.002				
	<i>y</i>					
Perme	ability Ty _] [Constant	▼		$K/K_0 = 1$	

(Material 1- 粉细砂)

Material Name		淤泥质粉质粘土			
Constitu	itive Mode	al:	Pastor-Zienkiewicz Mark III		
Succeed	l		No Succeed		
Initial S	tress Tens	ile	No		
Constit	utive Model Pa	arameters:			
M _g :	1.14		Mri	1.103	
α _g :	0.276		O(f:	0.276	
K _{evo} (Pa):	5.5e6		G _{eso} (Pa):	10.13e6	
β ₀ :	4.2		β1:	0.2	
H ₀ :	29.93		Hu₀ (Pa):	4e7	
γu:	2		ү рм:	4	
P ₀ ' (Pa):	100000				
Variation	Туре:				
		Bulk and She	ar Modulus are C	Constant	•
Dampn	nod Model Par	ameters:			
Dampmo	d Model:			ELASTIC	
		4.7			
Young's	Modulus (Pa):	4e7			
Poisson	's Ratio:	0.31			
Dampir	ng Coefficient:	0.004			
Perme	ability Ty	Constant		$K/K_0 = 1$	

(Material 2\6\7 - 淤泥质粉质粘土 1\2\3)

图 1-17 Step 4 材料参数设置

Material 3 4 5 均不发生变化,继承 Step 1 的材料参数。

1.7.2 设置 Step 4 重力加速度场

重力场在 Step 1 中已经添加,新建时间步时后自动复制当前时间步的设置,因此后续时间步不 再重复施加加速度场。

1.7.3 加载自定义地震波

点击Preprocess—Earthquake—UserDefined,用户可以加载用户自定义地震波,在显示的对话框中加载地震波文件,如图 1-18 所示。加载地震波后,在界面中显示的地震波如图 1-18 所示。点击UserDefined,点击左下角的 Load,导入地震波文件。

	🖬 Userdefined Earthquake				
No Earthquake Sinusoidal Function		$\nabla X \text{ factor: } 1$	Initial Time (0 T 20 30 40 T	50 60 70 3	Aax: 1.50e+00m/s ²
e Library tandard	Number of Data: 9000 Frequency (Hz): 0.01 Unit Conversion (m/s ²): 1	✓ Y Factor: 1	Initial Time (0 T 1000 1000 20 30 40	S0 60 70	Aax: 1.00e+00m/s ²
ed		Load	Т	îme (s)	Ok
)窗 > data (E:) > SL > suanli2 >		~ Õ	在 suanli2 中	搜索 Ⅲ ▼ □□	× م
谷称 ▲ Results ■ Temp ■ dilituiges ■ EarthQuake ■ MESH_AF ■ MESH_AF ■ Suanli2.fssi	修改日期 2023/4/4 15:32 2023/4/4 17:11 2023/3/31 11:03 2023/4/6 15:26 2023/4/1 22:50 2023/4/4 15:32	类型 文件夹 文件夹 IGES 文件 文件 FSSICAS	大小 4 KB 237 KB 7,000 KB 0 KB		
	uake Function Library tandard ed 题: > data (E:) > SL > suanli2 > 名称 Results Results Carrier Library tandard	uake Function Library tandard ed Aga > data (E;) > SL > suanli2 > Aga > data (E;) > SL > suanli2 > Aga	Auake Function Library tandard ed	Jake Number of Data: 900 Function 1 1 1 Library 1 1 1 1 tandard 1 1 1 1 1 ed 1 1 1 1 1 1 1 ed 1	Library tandardImage: conversion (m/s): 1Image: conversion (m/s): 1

加载成功后,如下,勾选 X Y Factor。点击 Ok

图 1-18 加载自定义地震波流程

1.7.4 设置 Step 4 的求解器

点击 FssiCAS—Preprocess—Solver—Solver Type, 在弹出对话框中设置求解器类型, Step 4 阶段, 求解器选择 Dynamic, 如下图 1-19。

Solver Setup

ς.		/	
)			
/	1	١	

Solver	Dyna	amic 🔻) [Drained	
Parameters					
Rotation		Non-Rotation			
Stiffness Matrix Symn	netry		Yes		
Iterative Convergence	e Criteria	0.01			
Maximum Subdivision	n Number	100			
Property Updation		No	n-Update	ed	
Analysis Type		2D-	Plane Str	ain	
Restart File Written			Yes		
Deformation to 0 in F	Restart File		Yes		
Displacement Succee	d		Yes		
NBFGS			1		
Sparse Solver Type		Direct Sp	oarse Sol	ver (LU)	
Parallel Method		CP	U OpenN	1P	
CPU Parallel Threads		4			
				Ok	

图 1-19 Step 4 求解器设置

1.7.5 设置 Step 4 的时间步

通过点击 FssiCAS—Time Step—Step4—Sub_ Step1设置时间步。

Simulation Time (s)为计算总时间,设置为 90 s; Interval for Time Steps (s)为时间步长,设置为 0.01 s; Interval for Updating Coordinate (s)为坐标更新时间,设置为 91 s (大于计算总时间,意为不更新坐标); Interval for Updating Global Stiffness Matrix (s)为刚度矩阵更新时间,设置为 91 s (不更新刚度矩阵); Maximum Iterations 为每个时间步最大迭代次数,设置为 30 步; Restart File Step (s)为输出重启文件的时间,设置为 91 s (不生成重启文件); Output Time Step (s)为输出某一时刻所有节点/高斯点上的位移、应力、应变等结果文件的时间间隔,设置为每 0.01 s 输出一次结果文件; Results Output 为选择输出 节点上的结果; History Plot Interval (s)为输出特定的节点或单元上的应力、应变等结果文件的时间间隔,设置为每 91 s 输出一次(意为不输出)。 α , β_1 , β_2 为时间系数,保持默认值即可。具体设置如图 1-20 所示

F	🐒 Time Step		?	\times
	Sub Step 1			
	Parameter			
	Simulation Time (s)	90		
	Start Time of Current Step (s)	0		
	Interval for Time Steps (s)	0.01		
	Interval for Updating Coordinate (s)	91		
	Interval for Updating Global Stiffness Matrix (s)	91		
	Maximum Iterations	30		
	Restart File Output Interval (s)	91		
	Results File Output Interval (s)	0.01		
	Results Output	On	Nodes	▼
	State Variables Output		No	▼
	Results Sequence	1	Manage	
	Results Format	E	Binary	
	History Output Interval (s)	91		
	α	0.6		
	β1	0.605		
	β2	0.6		
	Cre	ate	Dele	ete

图 1-20 Time Step 4 相关参数设置界面

1.8 设置初始条件

点击工具栏,分别在 Step 1、Step 2、Step 3 和 Step 4 下点击 FssiCAS—Preprocess—Initial State,设置初始条件,点击 ok,完成初始状态设置。

1.9 计算

点击 FssiCAS—Preprocess—Computation—FSSI-W, 勾选 All Step, 开始计算。

2 FssiCAS 图形界面操作——后处理

2.1 加载文件

案例计算完成之后,点击 FssiCAS—Postprocess—Open Results File—Load File,加载Results— Soil_Model 路径下的 Multiple 结果文件夹,如下图 2-1 所示。

	Load Files – 🗆 🗙
Model Results	File Type: FssiCAS
PostProcess	Data Path:
Open Result Files	Load Files Reload Remove
Load Initial Files	Ok

	🙀 Choose a Soil Results File					×		
	← → × ↑ 📜 > 此电脑 >	data (E:) > SL > suanli3 > Results	s > Soil_Model >	ٽ ~	在 Soil_Mo	del 中搜索 👂		
	组织 ▼ 新建文件夹					?		
	此电脑	R A	修改日期	类型	大小			
	 3D 対象 <l< th=""><th>Multiple Step 1</th><th>2023/4/12 15:08 2023/4/12 15:08</th><th>文件夹文件夹</th><th></th><th></th><th></th><th></th></l<>	Multiple Step 1	2023/4/12 15:08 2023/4/12 15:08	文件夹文件夹				
注:加 File,手动ì	■载完成后,需要有 选择计算完成的文 下就 Load	图 2-1 加载数 PostProcess Open Resul Load Initial C件作为初始载入 Files	数值计算结果 t Files Files 文件,如图约	【文件步骤】 红框部分, 一	图 点击L	更改FssiRe .oad File,注 二 ×	esult Initial 先择	
第14步计算	FssiRe 2/Res Gauss li2/Re	esult Initial File sults/Soil_Model/N s Initial File esults/Soil_Model/ 最后一步计算文件	Multiple/FssiF /Multiple/Gau 牛作为初始载	Result_Ini uss00001 之文件,女	一 10a	d File d File Ok		
📜 « data	(E:) → SL → suanli2 → F	Results > Soil_Model >	Multiple >	~	Ü	在 Multiple 中	雙索 /	Q
这件夹							:= - 🔲 🚺	?
^	名称 へ	修改	 女日期	类型		大小		
	EssiResult00005	202	23/4/11 17:47	文件		4,538 KB		
	FssiResult00006	202	23/4/11 17:47	文件		4,538 KB		
	FssiResult00007	202	23/4/11 17:47	文件		4.538 KB		
	EssiResult00008	202	23/4/11 17:47	文件		4.538 KB		
	EssiResult00009	202	23/4/11 17:47	文件		4 538 KB		
	EssiPosult00010	202	23/4/11 17.47	文件		4,530 KD		
		202	23/4/11 17:47	又1+		4,330 ND		
		202	25/4/11 17:47	又14		4,538 KB		
		202	23/4/1117/:4/	又作		4,538 KB		
)) (E FssiResult00013	202	23/4/11 17:47	文件		4,538 KB	1	
	FssiResult00014	202	23/4/11 17:47	文件		4,538 KB	J	
	FssiResult00015	202	23/4/11 17:48	文件		4,538 KB		

为什么选择第14步计算结果文件作为初始载入文件?

答:因为前3步都是设定初始状态,Step 1和Step 2 的计算总时长为1s,每步时长0.5s,所以 是2步,Step 3 每步时长是0.1,所以是10步,随即选择第14步计算结果文件作为初始载入文件 (软件会默认选择FssiResult00001 第1步,所以需要手动更改)。

2.2 绘制分布图

0

AZ.

点击 FssiCAS—Postprocess—Distribution Plot—Solid—Displacement,在界面上方工具栏选择 Displacement X,输入想要查看的时间步点击回车。

由于计算时没有开位移更新,所以在后处理 Postprocess 右侧的 V Display Option 中的 Deformation Scale Factor 调整显示位移变化(左图)。在 Scalar Bar 中调整显示范围变化(右图),点击 Apply。

X (m)

100

150

50

图 2-2a X方向的位移分布图(3s)

-0.0525

200

查看地震作用后的液化区域分布图,点击 FssiCAS—Postprocess—Liquefaction Potential— Stress Based,选择工具栏中的 Stress Based Lp-3D。在右边 Scalar Bar 调一下范围大小。由于计算 时没有开位移更新,所以在后处理 Postprocess 右侧的 中的 Deformation Scale Factor 调整显示位移变化(左图)。在 Scalar Bar 中调整显示范围变化(右图),点击 Apply。

Remove Air Domain Threshold of VOF: 0.5	 ✓ Scalar Bar Automatic Display Solid Bar
Scale Factor Deformation Scale Factor	Solid Min Value: 0 Solid Max Value: 0.8 Solid Bar Divisions: 2
Glyph Scale Factor 1 Number of Arrows 100	Display Wave Bar Wave Min Value:
Apply	Wave Bar Divisions: 4 Apply

图2-3 浅埋工况各时刻液化区分布

