Clay Sand Unified Harding (CSUH) 模型

本章节案例通过三轴排水压缩试验,介绍 Clay Sand Unified Harding 模型的使用过程。计算模型为边长为 1m 的六面体单元,如图 1 所示。

图1计算模型示意图

1.1 FssiCAS 图形界面操作——前处理

1.1.1 新建工程文件

用户首先在任何路径新建一个文件夹,自定义文件名。在启动 FssiCAS 软件 后,点击 File—New,即可新建一个项目。点击 File—Save,选择之前新建的文 件夹,即可将新建的项目保存在之前新建的文件夹里。

1.1.2 导入模型

导入 GID 中建立的六面体单元, 如图 2 所示。

图 2 导入 GID 模型文件

在弹出的 Load Mesh 窗口中设置固体节点数和流体单元阶次,在本案例中固体节点采用八节点单元,不设置流体单元。因此,固体节点数设置为 8,流体节 点阶次设置为 0(即没有流体存在),点击 OK。在工作区中显示的几何模型如图 3 所示。

图 3 几何模型的显示

1.1.3 设置初始应力场

为模拟围压 $\sigma_3 = 3000$ kPa、孔隙比 $e_0 = 0.833$ 的三轴排水压缩试验,需要利用弹性分析步 (Step 1) 提供一个初始应力状态场。具体步骤如下:

(1) 设置边界条件

在x = 0、y = 0以及z = 0的面上施加法线方向的位移约束;在x = 1m、y = 1m以及z = 1m 的面上施加 3000kPa 的压应力。边界条件施加完成后 如图 4 所示。

图 4 弹性分析步 Step 1 的边界条件

(2) 设置本构参数

为保证弹性分析步结束时,单元体不会产生太大的应变,因此将弹性模量设置为一个较大值,如图 5 所示。注意:由于不考虑重力的影响,所以设置 Granular Density = 0。

图 5 弹性分析步 Step 1 的计算参数

(3) 设置求解器参数

👪 Time Step	? ×
Sub Step 1	
Parameter	
Simulation Time (s)	1
Start Time of Current Step (s)	0
Interval for Time Steps (s)	1
Interval for Updating Coordinate (s)	1
Interval for Updating Global Stiffness Matrix (s)	1
Maximum Iterations	10
Restart File Output Interval (s)	1.1
Results File Output Interval (s)	1
Results Output	On Nodes 🔻
State Variables Output	No 🔻
Results Sequence	Manage
Results Format	ASCII 🔻
History Output Interval (s)	1
α	0.6
β1	0.605
β2	0.6
[Create Delete

图 6 弹性分析步 Step 1 的求解器参数

(4) 设置初试状态

😼 Initial St	ate	×
Solver:	Static	
Type:	Generate Initial File	
Set initi	al state to Zero Yes	▼
		Ok

图 7 初试状态设置

1.1.4 模拟三轴排水压缩试验

基于 Step 1 提供的应力场,通过添加新的分析步模拟围压 σ_3 =3000kPa、孔隙比 $e_0 = 0.833$ 的三轴排水压缩试验,具体步骤如下。

(1) 添加时间步

点击^{Step}按键可增加时间步,添加成功后左端任务栏会显示添加的时间步, 如图 8 所示。

图 8 增加时间步的步骤示意图

(2) 施加边界条件

在 Step 2 中,除了延续 Step 1 的边界条件外,还需要在 z = 0.1m 的面上施 加动态的位移边界,以模拟三轴试验的加卸载过程。为此,需要通过添加位移时 程曲线来实现该功能,如图 9、10 所示。施加成功之后, Step 2 的边界条件如图 11 所示。

图 10 添加位移时程曲线

图 11 Step 2 的边界条件

(3) 设置计算参数

在 Step 2 的材料属性设置对话框里,选择 Clay Sand Unified Harding Model 本构模型,计算参数如图 12 所示。需要注意的是:为模拟正常固结粘土的应力 应变特征,本部分设置先期固结压力为 0kPa。除此之外,为满足实际工程和单元 体试验的数值计算,FssiCAS 提供了三种考虑 CSUH 模型中先期固结压力*P_x* 的 方法,如图 13 所示。

Material 1	-	
Material Name	Material 1	
Constitutive Model:	Clay Sand Unified Harding (Yao)	•
Succeed	No Succeed	V
Initial Stress Tensile	Yes	
Constitutive Model Parameters:		
M 1.25	N 1.973	
ν 0.3	c 0	
к 0.04	Z 0.934	
λ 0.135	χ 0.4	
e ₀ 0.833	m 1.8	
Pre Consolidation Pressure:	Value 0	
Dampmod Model Parameters:		
Dampmod Model:	ELASTIC	
Young's Modulus (Pa): 0		
Poisson's Ratio: 0		
Damping Coefficient: 0		
Material Parameters:		
Solid Particle Bulk Modulus (Pa): 1.0E+20		
C		

图 12 Clay Sand Unified Harding Model 本构模型参数设置

Material 1		- 0	×
Material Name	Material 1		^
Constitutive Model:	Clay Sand Unified	d Harding (Yao)	
Succeed	No Suo	cceed	
Initial Stress Tensile	Ye	S	
Constitutive Model Parameters:			
M 1.25	N 1.973		
ν 0.3	c 0		
к 0.04	Z 0.934		
λ 0.135	χ 0.4		
e ₀ 0.833	m 1.8		
Pre Consolidation Pressure:	Value 🗸 0		
Value			
Dampmod Model Parameters: OCR From R	start File		٦.
Dampmod Model:	ELAS	STIC 🔻	
Young's Modulus (Pa): 0			
Poisson's Ratio: 0			
Damping Coefficient: 0			
			J
Material Parameters:			1
Solid Particle Bulk Modulus (Pa): 1.0E+20			
C			~

图 13 CSUH 模型中先期固结压力 P_x 的设置方法

(4) 设置求解器参数

为保证计算的收敛性以及结果的可靠性,本案例设置 Step 2 的迭代收敛标 准为 1e-4,最大迭代步数为 100,如图 14 所示。为平衡初始固结引起的变形, 在 Step 2 的求解器设置中,设置 Displacement Succeed 为 No。

F	Solver Setup							>
Solver Sta		atic	▼	Dr	ained			
	Parameters							
	Rotation		N	lon-	Rotation			▼
	Stiffness Matrix Symme	try			No		,	▼
	Iterative Convergence (Criteria	0.0001					
	Maximum Subdivision	Number	100					
	Property Updation		Non-Updated			,	▼	
	Analysis Type		3D			,	▼	
	Restart File Written		Yes				,	▼
	Deformation to 0 in Re	start File	Yes				,	V
	Displacement Succeed		No				,	▼
	NBFGS				1		,	▼
	Sparse Solver Type		Direct	Spai	rse Solve	r (LU)	,	▼
	Parallel Method		0	PU (OpenMP		,	▼
	CPU Parallel Threads		8]
						0	k	

图 14 Step 2 的求解器参数

(5) 设置时间步参数

注意:在 Step 2 中的计算过程中,设置坐标更新的时间为 3000(即不更新坐标)。

图 15 Step 2 的时间步参数

😼 Initial St	ate	:
Solver:	Static	
Type:	Generate I	nitial File 🔍 🔻
Set initia	al state to Zero	Yes 🔻
		Ok

图 16 Step 2 的初试状态设置

1.1.5 设置输出参数

通过 按钮,输出单元内任意一个高斯点的应力、应变以及位移数据。施 加完成结果,如图 17 所示。

Information		
Coordinate	Туре	No.
(0.10000,0.10000,0.10000)	Element_Strain	1
(0.10000,0.10000,0.10000)	Element_Stress	1
(0.10000,0.10000,0.10000)	Node_Disp_X	1
(0.10000,0.10000,0.10000)	Node_Disp_Y	1
(0.10000,0.10000,0.10000)	Node_Disp_Z	1

图 17 输出时程数据

1.1.6 计算并保存

点击树状菜单栏内的 Computation-FSSI-W,在弹出的对话框中选择 All Step 进行计算。点击 OK 后,软件会提示将结果文件以及条件设置进行保存,选择对 应文件夹保存后,即可进行计算。

1.2 FssiCAS 图形界面操作——后处理

用户点击树状菜单栏上的 Results,即可进入后处理界面。

1.2.1 加载文件

点击在后处理界面上 Results 树状菜单栏中的 Open Results File,在弹出的窗口中点击 Load Files,即可进入后处理阶段,如图 18 所示。

	Full V DI	spiacement X 🕐 🗣 🕨 🔽 🖸	OS 4 Allocated Memory S	IZE(MB) : 10 Project	
odel Results		Soil-Structures PostProcess			
MPacess Open Result File Load Initial Files Darhbutton Solution Soluti	Notes No	Fi Load Files - File Type: FasiCAS Data Patts //Clay_Sand_UH/Catculated/Results/Soil_Mode//Multiple Load Files Reload Rec	Unit: m 0 -7.5e-05 -0.00015	Display Option Display Option Super Arrive Section Potential Scalar Bar Arris Respective Sectional View Sectional View Export	
		C z	-0.000225		
	2	2022-12-26 12:12:12 Mon			

图 18 加载结果文件

1.2.2 绘制分布图

在树状菜单栏中点击 Effective Stress,可以在在工具栏中显示选择,在工具栏的输入窗口 Effective Stress X 0.5 处输入时间步,按键盘上的"回车键",即可在工作区中显示该时间步的 *x* 方向的应力分布图;

当时间步为 1s 时, x、y 以及 z 方向应力分布图如图 19、20 以及 21 所示; 当时间步为 3000s 时, x、y 以及 z 方向应力分布图如图 22、23 以及 24 所示。

当时间步为1s时, z方向应变分布图如图 25 所示;当时间步为3000s时, z方向应变分布图如图 26 所示。

图 20 Step 1 结束时 y 方向应力分布图

🖱 🗃 💾 🌓	Full V	Effective Stress Z 🛛 🔻 🕨 🖚 1	🖞 🤂 🤂 CPUs 🕐	4 Allocated Memor	ry Size(MB): 10 Project:
Model Results		Soil-Structures PostProcess			
PostProcess Open Result Files Load Initia Files B Distribution B Soil & Structures Displacement Effective Stress	Mode +Xy-Xy +Xy-Xy	Fssi	tive Stress Z Time: 1s	Unit: Pa -3e+03	Display Option Liquefaction Potential Scalar Bar Axis Month Anix
Strain Pore Pressure Seepage Velocity Seepage Force Void Ratio Acceleration State Variables	+¥Z-¥Z EsWs			-3e+03	Port Size 13 0 Display Axis Widget 2 > Perspective >
Liquefaction Potential Stress Based Pore Pressure Based Seepage Based Structural Element OpenFOAM	WNEN			-3e+03	> Export
Dual/SPHysics Pressure Velocity Idp Fluent M History Plot Soil History				-3e+03	
Wave History		te start and the		-3e+03	
		2022-12-26 12:54:45 Mon			
Enter Command Here					

图 21 Step 1 结束时 z 方向应力分布图

图 23 Step 2 结束时 y 方向应力分布图

图 24 Step 2 结束时 z 方向应力分布图

Fai FasiCAS V3.2.33						-	ø	×
Pile UserDefined Support	Full v	Displacement Z 🔻 🕨 =	▶ 1 🕹 🔂 🚱 CPUs 4	Allocated Memory Sizel	(MB) : 10 Project	:	_	20
Model Results		Soil-Structures PostPro	ress					
PostProcess	Modoa				> Display Option	1		Π
-Load Initial Files	Modeo	-		TTuite	> Liquefaction P	otential		
Distribution Soil & Structures	+Xy-Xy	Fssi	Displacement Z	0 m. m	> Scalar Bar			
Displacement			Time: 1s		✓ Axis			
- Effective Stress	+XZ - XZ				Model Axis			
- Pore Pressure					Font Size	13		
Seepage Velocity Seepage Force					Display Axis Widg	et 🗹		
Void Ratio	Ectwo				> Perspective			
- Acceleration - State Variables				-7.5e-05	> Sectional View	r		
8- Liquefaction Potential	WNEN				> Export			
Stress Based	وغا تف				- captore			1
Seepage Based								1
- Structural Element								
- OpenFOAM - DualSPHysics								
Pressure				-0.00015				
Velocity								
- Idp - Fluent								
🖻 \land History Plot								
- Soil History								
- Wave History		,Z						
		-1		-0.000225				
		¥						
		2022-12-26 12:57:22 M	on					U
Enter Command Here								v
				Element No.:	Node No.: Materia	al : S - F Type : Boundary :	Select Typ	e:

图 26 Step 2 结束时 z 方向位移分布图

1.3 结果对比

利用 Matlab 读取 TimeHistory 中的相关数据,绘制轴向应变与偏应力曲线, 并与北京航空航天大学姚仰平教授团队提供的 Abaqus 计算结果对比,结算结果 如图 27 所示。

图 27 FssiCAS 计算结果与姚仰平教授团队提供 Abaqus 计算结果的对比