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The mechanical and hydraulic properties of fractured rock masses are generally controlled by the
distribution characteristics of discontinuities developed in the rock masses. In practical measurement on
exposures, the spacing data collected frequently contains some statistical errors due to the spacing of
small discontinuities, and micro-cracks being ignored. In this study, a correction model aiming to
eliminate the statistical error is proposed based on the negative exponential distribution of trace length
and spacing, to describe the distribution regularity of the spacing data obtained from outcrops or
exposures. Based on the model, a corrected probabilistic density function that can describe the distri-
bution regularity of the spacing data containing the statistical error is developed; and a new method is
further presented to determine the true distribution parameter of spacing of all discontinuities in rock
masses. The sensitivity analysis indicates that the true distribution parameter A of all spacing is
moderately sensitive to the u (reciprocal of the mean trace length) and the critical trace length lp; and
completely insensitive to the maximum spacing of small discontinuities xo. Finally, the correction theory
is verified by a simple 2D model with one set of discontinuities and a complex 2D model with four sets of
discontinuities, generated using Monte Carlo method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuities developed in rock masses, such as fractures and
joints, have significant influences on the deformation (Lin et al.,
1996), strength (Kulatilake et al., 1997), permeability (Larsen
et al., 2009; Baghbanan and Jing, 2007), stress—strain relation (Tai
and Huang, 2009), and the failure (Liu et al, 2000) of rock
masses. Generally, the discontinuities are developed in rock masses
randomly and in sets. The properties of the fracture networks in
rock masses, including the trace, spacing and orientation play the
dominant role in the instability of rock-slopes, landfall of rock
blocks and the failure of surrounding rock of caverns. The devel-
opment characteristics of discontinuities are always paid great
attention in the large-scale construction engineering, such as the
Three Gorge dam (Kulatilake et al., 1996), Jinping NO.1 and 2
hydropower stations (Deng et al., 1996) in China.

The trace length and spacing are two parameters usually used to
describe the geometrical characteristics of the fracture network of
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discontinuities. They are both considered to be generated in rock
masses randomly; and could be frequently described by certain
probabilistic density functions. Priest and Hudson (1976, 1981) and
Einstein and Beacher, 1983 had conducted the path-breaking works
on this problem, and reported that the statistical regularity of trace
length and spacing of discontinuities both complied with the
negative exponential distributions. Many field measurements also
shown that the negative exponential probabilistic density distri-
bution is suitable to represent the distribution regularity of trace
length (Wallis and King, 1980; Baecher, 1983; Kulatilake et al., 1993,
2003; Park and West, 2001), and the spacing of discontinuities
(Gillespie et al.,1993; Narr and Suppe, 1991; Zhou et al., 2000; Zhang
et al., 2007).

However, there is also some literature claiming that the spacing
of discontinuities in rock masses follow well the lognormal distri-
bution. Castaing et al. (1997) studied the scale effect of natural
fracture networks on geological maps of different scales. It is found
that the spacing of fractures can be described by the lognormal law
at some scale, such as 1:1, 1:100 and 1:1000. Pascal and Angelier
(1997) have collected the field data from some coastal exposures
in Liassic rocks at Liantwit Major near Cardiff (Wales, U. K.). It is
found that the data of spacing of discontinuities in rock masses fits


Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:yejianhongcas@gmail.com
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg
http://dx.doi.org/10.1016/j.jsg.2012.04.006
http://dx.doi.org/10.1016/j.jsg.2012.04.006
http://dx.doi.org/10.1016/j.jsg.2012.04.006

18 J. Ye et al. / Journal of Structural Geology 40 (2012) 17—28

well the lognormal distribution. The data of discontinuity spacing
measured by Ruf et al. (1998), and Sari (2009) from outcrops both
show a good consistency with the lognormal distribution. Simpson
(2000) concluded that spacing was neither well described by the
power law, nor by the negative exponential distribution, but fitted
the lognormal distribution based on the data collected from veins
in Psammite and Pelite, NW Sardinia Italy. Odonne et al. (2007)
found that the spacing of discontinuities not only in each sedi-
mentary layer, but also in the whole statistical window, both
complied well with the lognormal distribution.

It is well known that there are not only large and visible discon-
tinuities, but also a great number of small, and invisible disconti-
nuities in fractured rock masses. The number of small and invisible
discontinuities is large, and the spacing between them is small.
Correspondingly, the frequency of spacing near zero is high, and
decreases when the value of spacing increases. In mathematics, the
negative exponential distribution can be used to describe this kind of
distribution regularity. Therefore, the spacing of all discontinuities in
fractured rock masses is frequently described by the negative
exponential distribution in practical engineering (Priest and Hudson,
1976, 1981; Einstein and Beacher, 1983). Further research by Lemy
and Hadjigeorgiou (2003) and Zhang and Einstein (1998) indicated
that whether the spacing of discontinuities follows the negative
exponential law or the lognormal law is mainly dependent on the
minimum measurement size (MMS), namely the minimum length of
discontinuities which are measured by operators on exposures. If the
MMS is small, for example, 10 mm, the spacing obtained fits well the
negative exponential distribution (Priest and Hudson, 1976, 1981). If
the MMS is large, for example 50 cm, a great number of small
discontinuities will be ignored in the field measurement. The spacing
of discontinuities obtained from field outcrops will follow the
lognormal law. Actually, the two types of distribution would both be
accurate. The only difference between them is that there is much
more statistical error contained in the spacing data if the large MMS
isadopted due to the fact that a great number of small discontinuities
are ignored during field measurement.

In practical measurement, the method adopting the statistical
window or scan-line is widely used to measure the trace length and
the spacing of discontinuities on field outcrops, rock cuts or tunnel
walls. However, no matter which method is adopted, the
measurement scope is always finite. Therefore, the maximum
spacing obtained is limited. Additionally, the small discontinuities
are frequently ignored due to the fact that they are either hidden in
the rock masses, or are difficult to check in the process of measuring
at worksites. Some statistical errors are unavoidable in the data of
spacing and trace length obtained from worksites. Some literature
(Toth, 2009; Priest, 2004; Lemy and Hadjigeorgiou, 2003;
Warburton, 1980; Zhang and Einstein, 1998; Mauldon, 1998) has
also found this kind of statistical error. For the trace length, some
correction methods aiming to eliminate the statistical error have
been developed (Zhang and Einstein, 1998; Mauldon, 1998; Priest,
2004; Warburton, 1980) when estimating the mean trace or per-
forming the mechanical or hydraulic computation. For spacing data
collected from field exposures, the statistical error also exists.
However, little attention has been paid to it; and few studies have
been conducted to correct this kind of statistical error. In order to
accurately estimate the characteristics of deformation, strength and
permeability of fractured rock masses with the spacing data
obtained from worksites or outcrops, it is meaningful to develop
a correction model to eliminate the statistical error of spacing.

In this study, a new correction method, aiming to eliminate the
statistical error of spacing data collected from worksites or outcrops
is proposed based on the negative exponential distribution.
Adopting the proposed method, a corrected probabilistic density
function f,(x) which can describe the distribution regularity of the

spacing data obtained from worksites or outcrops is derived. Based
on the corrected probabilistic density function f,(x), a formula is
developed to determine the true distribution parameter of spacing
of all discontinuities using the spacing data collected from work-
sites or outcrops; Finally, a simple 2D model with only one set of
discontinuities, and a complex 2D model with four sets of discon-
tinuities are generated adopting the Monte Carlo method, and are
used to check the validity of the corrected model and the formulas.

2. Development of correction theory

Based on the results reported in previous literature, it is
assumed that the trace length and spacing of discontinuities in
fractured rock masses both naturally follow the negative expo-
nential distribution on the whole. In rock engineering, the negative
exponential distribution is widely adopted to estimate the Rock
Quality Designation (RQD) adopting the estimation formula
proposed by Priest and Hudson (1981):

RQD = 100e %14(0.14 + 1)

in which A is the distribution parameter of the negative exponential
distribution of spacing. In practical rock engineering, the RQD is
a very important parameter used to determine the rock quality, to
classify the rock classification, and to assess the stability of slopes,
tunnels or excavated caverns in mountains. From the point of
practicality in engineering, the choice of negative exponential
distribution is acceptable. The expressions describing the distri-
bution are respectively:

fx) = de™ (1)

g(l) = pe (2)

where x is the spacing variable ranging from 0 to +, 4 is the
reciprocal of the mean spacing. [ is the trace length variable ranging
also from O to + =, u is the reciprocal of the mean trace length. In
measurement, the statistical windows or scan-lines are finite and
limited (the length of scan-line or the maximum distance of arbi-
trary two points in statistical window is referred to as L). The data of
spacing obtained can not be larger than L. The Eq. (1) is not suitable
to describe the statistical regularity of the spacing data obtained
from worksites or field outcrops. Frequently, the censored correc-
tion is performed for the Eq. (1). The result of censored correction is
(Wu, 1995):

A
") =

As stated above, the small discontinuities and micro-cracks are
ignored in the measurement. Hence, the critical value of trace
length between the small discontinuities and the large disconti-
nuities is an important concept for measurement in worksites.
Namely, the traces shorter than the critical value are considered as
small discontinuities; and those longer than the critical value are
considered as large discontinuities. Here, the critical value of trace
length is defined as lp. As we know, there are a large number of
small discontinuities and micro-cracks in rock masses; and their
spacing can not be very large. There must be a maximum value
among these spacing of small discontinuities and micro-cracks. We
can easily find out this maximum spacing value from the spacing
data of small discontinuities obtained from worksites. This
maximum vale is defined as xq. Obviously, the xg is not an inde-
pendent quantity, and has a close relation with the critical trace
length value ly. The x¢ will definitely increase non-linearly as Iy
increases.

e ™M 0o<x<L (3)
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Although the maximum value of spacing of small discontinuities
is xo, it does not mean that all the spacing values smaller than xg
only belong to small discontinuities and micro-cracks. Some of
spacing values smaller than xo would belong to large discontinu-
ities. However, all the spacing values larger than xg belong to large
discontinuities. Now provided that the probabilistic density func-
tion of the spacing belonging to small discontinuities and large
discontinuities is f4(x) and f5(x) in the range of 0 to x, following two
expressions can be written

/f4(x)dx =1 and /fs(x)dx =1 (4)
0 0

The total number of spacing of all discontinuities, including
small discontinuities and large discontinuities is N. There are N + 1
traces corresponding to the N spacings. It is reasonable to make the
approximation: N = N + 1. According to the idea stated above, it is
known that the spacing in the range of 0—x( consists of two parts,
the first part is the spacing of small discontinuities; the second part
is the spacing of large discontinuities. Then, the following expres-
sion can be obtained:

Fa(x)dx-NIS + f5 (x)dx{Nl,jj —NI%XO} —fi(x)dx-N 0<x<xy (5)

where I and I is the definite integral of g(I) and fi(x) over fixed
intervals:

L X
 — / ghdl and 12 — / fL(0)dx
L X1

Deleting the common factors N and dx, Eq. (5) can be simplified to:

LI +f50 {17 ~ i} = iy 0<x<x (6)

In the Eq. (5), the terms of N[g’ and NI; respectively stand for the
total number of the small discontinuities and the large disconti-
nuities. The term of NI%XO is the number of the large discontinuities
with spacing value ranging from xg to L; it is a definite integral with
the value of N(e®o — ell)/(1 — e=*)elLl+%)  Correspondingly, the
term of NI" — NI%XD is the number of the large discontinuities with
spacing value smaller than xg.

So far as we know that the spacing of small discontinuities is
generally small compared with the maximum value xq; however, their
amount accounts for a large proportion in the all spacing of discon-
tinuities. In the negative exponential distribution of spacing censored
to L, the spacing of small discontinuities mainly concentrate at near
the region of zero on the abscissa. As the value of spacing increases, the
frequency of spacing of small discontinuities will fall sharply. Finally,
the frequency of spacing of small discontinuities will preserve a very
low level near the maximum value xq (like that depicted in Fig. 1).
According to this phenomenon and the distribution characteristics of
the spacing of small discontinuities in fractured rock masses described
above, the following hypothesis is made for derivation:

f4(x)dx~NI£]°
fix)dx-N

Removing the common factor N and dx, above expression become:

1 1 X0
=Al-__ -0 7
A{z WarctanSO(x 2)}+B 0<x<xg (7)

lo
f‘}()((il)o = A{1 —Larctanso (x - @>} +B 0<x<xg (8)
1

2w 2
wheref4(x)dx-NI£‘; is the amount of small discontinuities with
spacing value x (0 < x < Xp); andf; (x)dx-N is the total amount of

N

Frequency
[=2]
P

T ‘| T—T ] T T T T T
0.0 0.05 01 0.15 02 0.25 0.3
Spacing (m)

Fig. 1. The frequency of spacing belonging to small discontinuities near the region of
0 (xo = 0.3). Xp is the maximum spacing measured from these small discontinuities.

discontinuities with spacing value also x (0 < x < xp), including the
small discontinuities and large discontinuities. The above hypoth-
esis is established based on the general shape of distribution curve
of the spacing belonging to small discontinuities, and from the view
of phenomenology. The ‘50’ is only an empirical coefficient here. A
and B are the two correction coefficients. It is necessary to include
these two correction coefficients, making the hypothesis flexible to
describe the distribution curve of small spacing. Equation (8) shows
the percentage of the spacing of small discontinuities whose value
is x (0 < x < Xp) (Fig. 9). The frequency of the spacing of small
discontinuities near the region of zero is shown in Fig. 1 according
to the hypothesis in Eq. (8).

Combining the Egs. (2), (3), (6) and (8), linear equations
are formed. Solving the equations, we can obtain following
expressions:

Cle™
= 9
f4(x) (.l _ 67“‘) (] _ e*#’o) ( )
(1—C)le ™
fsX) = e el e Tl (10)
where
C=<A 1flarctanSO(xfx—o) +B (11)
- 2 T 2
According to Eq. (4), we get:
Xo Xo
Cle=™
/f4(x)dx - / e e =1
0 0
Xo ] 1 Xo
/ A{j — —arctan50 (x - %0) }Ae*b‘dx + / Ble *dx
0 T 0 (12)

(e e)
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Through some algebraic manipulations, we obtain an equation
of A and B:

() (1-e7) = (=) (1-e)

Where D = — [X° arctan50(x — Xo/2)e**dx is a definite integral
which can be calculated using numerical method.

Next, we will establish the corrected probabilistic density function
fo(x) which is suitable to describe the statistical distribution of those
spacing data with the statistical error obtained from worksites or
outcrops. As stated above, the small discontinuities whose length is
smaller than [y generally are ignored in measuring. The probabilistic
density function f,(x) will not contain the spacing of small disconti-
nuities. According to the probability theory, the f>(x) can be defined as:

(13)

Nfy (x)dx — NI fy (x)dx
NI
Nfi (x)dx

NI

0<x<x
fx)dx = " (14)

Xo<x<L
Considering the Eqs. (2) and (8), and simplifying Eq. (14), we obtain:

i) —I8fax)  fi(x0(1-0)
I[[;° - e_“'lo
Hx) i)

- Xo <x<L
1[: e—tlo 0=%=

LX) = (15)

L 0 N
(1 = C)Axe ™ Jxe—x

E(x) = /xfz(x)dx = /de +

0 0 Xo

A e €01 et -1 AX
{(2+B)<xoe DJFA) —Le fTJr?/

0

1':(1 - e*“) (1 - e*“"’)

" D+ (1 - e *)arctan25x,

71:(1 - e‘”) <1 - e—“’O) (%arctanZSxo - %)

D + (1 — e~*0)arctan25xg

B — (20)

As we can see from the Eqgs. (19) and (20), the correction coef-
ficients A and B both depend on the parameters A, y, Xo, lo and L.

3. Estimation of the true distribution parameter of spacing
3.1. Estimation of the parameter A based on the corrected model fo(x)

The probabilistic density function f,(x) reflects the statistical
regularity of the spacing data with statistic errors obtained from
worksites or outcrops. It can not describe the real distribution of
spacing of all discontinuities in the fractured rock masses. The
method of obtaining the true distribution parameter A is presented
as follow.

According to Eq. (16) and the probabilistic theory, the expected
value (weighted mean spacing) of spacing under the distribution of

H(x) is:

/ (1- e*“)e*#’odx

Xo
arctan50 (x — %0) xe‘”‘dx}

=X

(1—e)re—#b

Substituting Egs. (2), (3) and (9) into Eq. (15):

_(A=0Ope™ C)Aeilx O<x<x
(1—e-)etb sX=%

fz(X) = l-{e,Ax (16)
Xo<x<L

(1 —eL)e—#b

f>o(x) should be a continuous function in the range 0 to L.
Accordingly, fo(x) must be left continuous, right continuous and
must have the same value at the point of xo:

fix)1 -0 _ fitxo)_ -

e—Hlo o—tlo |x:x0 =0 (17)
And
1 1
C}x:xo =A j — EarCtanstO + B=0 (18)

The above expression is actually another equation of A and B.
Combining the Egs. (13) and (18), we can obtain the solutions of A
and B:

In Eq. (21), 4 is the parameter we want to obtain which can
relatively exactly describe the distribution of spacing of all
discontinuities. The other parameters u, Xo, lo and L all can be
determined conveniently from the spacing data obtained from
worksites or outcrops. X is the mean value of the spacing measured
on exposures, namely, X = 1/n3"] x;. Therefore, the problem of
obtaining the parameter A can be solved adopting Eq. (21).
However, Eq. (21) is a highly nonlinear problem. Hence, it is very
difficult and unrealistic to solve Eq. (21) analytically. In this study,
we propose another method to determine A. According to Eq. (21),
a line graph can be plotted by takingx as the longitudinal axis, A as
the abscissa (Fig. 2). From the line graph, we can easily determine
the value of 1 corresponding to the mean spacing X on the line.

In application, we can calculate the mean spacingx firstly from
the measurement data obtained from worksites or outcrops. Then,
the real distribution parameter A of spacing of all discontinuities
can be easily determined according to Fig. 2. It is also suggested to
list a table to show the relationship between the A and the mean
spacing. Then, the linear or nonlinear interpolation method can be
adopted to determine the values of A based on the listed table. Here
it is noted that the line graph or the table is significantly dependent
on the four parameters of xg, u, lo, L. When applying the method
proposed here to determine 4, we must plot the line graph or list
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A |
1]
X

1.0

= |/m

0.5

Fig. 2. Relation line graph between X and 1 according to Eq. (21). X = 1/n Y"1 x; is the
mean value of the spacing measured on exposures. A is the parameter describing the
negative exponential distribution. In the complete negative exponential distribution,
is the reciprocal of x. This figure shows that the ignoring of small discontinuities in
measurement has a significant effect on the distribution of measured spacing data. This
graph is plotted assuming xo = 0.3, u = 04, lp = 0.5, L = 100.

the table specially corresponding to the specific values of x, u, lo, L.
Generally, the procedures of application of the method proposed in
this study are shown in the Fig. 3.

In application, if we ignore all the discontinuities shorter than Iy
in measuring, there will be no record of the trace length and the
spacing of small discontinuities. It is very difficult for us to deter-
mine the maximum spacing value xg of small discontinuities. To
solve this problem, we should also record additionally some the
spacing of these small discontinuities which are just little shorter
than lp. The maximum spacing value xo of small discontinuities
would be designated as 1.05 times the maximum value of the
spacing of these small discontinuities.

Setting the critical trace length [,
generally smaller the mean trace.

3.2. Sensitivity analysis

The sensitivity analysis of A is performed for p, ly, Xo and L. The
purpose is to check whether the true distribution parameter 2 is
sensitive to u, lp, Xp and L according to the relationship of Eq. (21).
When analyzing the sensitivity of A to one of the four parameters,
we set the other three parameters as a constant in calculation. Here
we always designate the four parameter as xo = 0.3, u = 0.4, [ = 0.5,
L =100,x = 0.4 as in Fig. 2.

3.2.1. The sensitivity to u (reciprocal of mean trace length)

Fig. 4 shows the relationship curve between the true distribu-
tion parameter of spacing A and the reciprocal of mean trace length
u. It is easy to conclude that the real distribution parameter 1 is
moderately sensitive to the u. Therefore, it reminds us that we must
carefully measure the trace length on exposures, and determine the
mean trace length with the methods proposed in literature (Zhang
and Einstein, 1998; Mauldon, 1998; Priest, 2004) which have
eliminated the statistical error to some extent.

3.2.2. The sensitivity to ly (the critical trace length)

Fig. 5 shows the relationship between the true distribution
parameter of spacing A and the critical trace length lp. It also indi-
cates that the 1 is moderately sensitive to the critical trace length Io.
Therefore, we should carefully set an appropriate value of Iy in
application of the correction model proposed in this study.
Generally, under the precondition that the measuring work is not
too time-consuming, the critical trace length Iy can be set as small
as possible because the small value of [y means a greater number of
discontinuities can be measured.

3.2.3. The sensitivity to xo (the maximum spacing value of small
discontinuities)

Fig. 6 has shows the relationship between the true distribution
parameter of spacing A and the maximum spacing value of small

Determining the size of statistical
window or the length of scanline;
then the L is known.

'

Measuring the trace length and the spacing of all discontinuities longer
that [y set by set on field exposures. And additionally record some the
spacing of these small discontinuities just little shorter than /,

Y k.

!

Determining the mean trace

Calculating the mean
value of spacing x
obtained from field
exposures.

Determining the maximum
spacing value x, of small
discontinuities

length of all discontinuities
with the methods which have
eliminated the statistical
errors (Zhang and Einstein
(1998); Mauldon (1998);

¥

Mauldon et al. (2001)).

According to the expression (21), plotting the line
g graph of x vs Z; or list a table.

!

Obtaining the real distribution parameter A (negative

exponential distribution) of spacing of all discontinuities.

Fig. 3. Procedures of application of the correction theory presented in this study.
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Fig. 4. Relationship between the real distribution parameter A and the reciprocal of
mean trace length of all discontinuities u (xo = 0.3, [p = 0.5, L = 100, x = 0.4). A is the
parameter describing the negative exponential distribution of the spacing of all
discontinuities.

discontinuities xo. From Fig. 6, it is can be seen that the real distri-
bution parameter of spacing A is not sensitive to the value of xg. It is
found that the A varies in the range of 1.67—1.75 corresponding to
the range of xg from 0.05 to 1.5 m; and there are some oscillations
for the value of A when xg is less than 0.8 m. Fortunately, A is not
sensitive to xg as a whole. This is a very significant and valuable
property. As stated above, it is relatively difficult to determine the
accurate maximum spacing value of small discontinuities xg in
application. However, it only slightly affects the true distribution
parameter A. Therefore, it is acceptable to estimate the xo with
little error only because 1 is not sensitive to xg at all.

3.2.4. The sensitivity to L (the length of scan-lines or the maximum
distance of arbitrary two points in statistical windows)

Fig. 7 illustrates the relationship between the true distribution
parameter of spacing A and L. It indicates clearly that the A is very

2.5 ; ; ! ;

15 F--rmeveeens ............ ............ .............

2 (m™

gl s

0 0.5 1 1.5 2 2.9
I, (m)

Fig. 5. Relationship between the real distribution parameter A and the critical trace
length Iy (xo = 0.3, u = 0.4, L = 100, X = 0.4). Iy is the critical trace length between the
small discontinuities and large discontinuities.

2 : ; : : ;
i
£ 1 ; 1 ]
<
05 k. L L .
N S R S R
0 0.25 0.5 0.75 1 1.25 1.5

X, (m)

Fig. 6. Relationship between the real distribution parameter of spacing A and the
maximum spacing value of small discontinuities xo (lp = 0.5, u = 0.4, L = 100, X = 0.4).
It is shown that A is not sensitive to xo.

unstable when the value of L is less than 5 m; however it can
quickly converge to its true value when the value of L is larger. Fig. 8
is drawn to study the convergence of x when the L varies under the
condition of A = 1.73 (which is the same with that in Fig. 2). It is
indicated that X is also unstable, and could not converge to the real
value (0.4 m) when the value of L is less than 5 m. Once the value of
L exceeds 5 m, X will converge to its true value quickly. The two
convergence characteristics remind us that the length of scan-lines
or the maximum distance of arbitrary two points in statistical
windows must be longer than 5 m in measurement on exposures.

4. Verification of the correction model

In fact, it is difficult to check the accuracy of the correction
model because we can not obtain the spacing data of all small
discontinuities in fractured rock masses. So we can not know about
the probabilistic density function fs(x) of the spacing of small

1.8

1.7

1.6
15
~<

1.3

1.2

1.1}

Fig. 7. Relationship between the real distribution parameter of spacing A and L. L is the
length of scan-line or the maximum distance of arbitrary two points in statistical
window. It is indicated that the length of scan-line must be greater than 5 m.
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Fig. 8. Convergence analysis of x when L varies under the condition that 1 is set as 1.73
which is the same as that in Fig. 2.

discontinuities. Therefore, the best way to check the validity of the
correction model f,(x) is to examine whether fy(x) could describe
the statistical regularity of the spacing data of large discontinuities
obtained at worksites or outcrops. In the following, two methods
are adopted to check the validity of the corrected model f,(x).

4.1. Simple verification with the ideal data

Supposed that we have a set of spacing data obtained from an
outcrop using the method of statistical window or scan-line. The
critical trace length is set as 0.5 m (Ip = 0.5). The length of scan-line
or the maximum distance of arbitrary two points in the statistical
window is 100 m (L = 100). The mean trace length of all disconti-
nuities is 2.5 m (x4 = 0.4); the maximum value of spacing of small
discontinuities is determined as 0.3 m (xg = 0.3). The mean value of
spacing measured from field exposures is 0.4 m. According to Fig. 2,
the real distribution parameter 4 is determined as 1.73.

According to Egs. (9)—(11), (16), (19), (20), we obtain:

C = 0.4061 — 0.2823 arctan(50x — 7.5)

1_73Ce—1.73x
1— e—]73) (] _ 30,2)

f4(X) = (

1.73(1 — C)e~ 173«
— e 054 L o 173 _ o 1732

f(X)S = e—02

1.73(1 — Q)e 173
hx) = 173e-1.73x
. 03 <x<100

(1—e173)e02

As the probabilistic density function, the f4(x), f5(x) and fo(x) must
satisfy that their integral value in the field of definition equal to 1.
Through the method of numerical integration, the integral values of
fa(x), f5(x) and fo(x) in the field of definition are respectively:

X0 Xo
/ fa(x)dx — 0.9999999999 and / f5(x)dx = 1.000000000

100 100

/f2 dx_/fz(x)dx+ / fr(x)dx

= 0 2665530439 +0.7334469561
= 1.0000000000

Their line graphs are shown in Figs. 9—12.

The line graph of the probabilistic density function f,(x) is very
similar to the lognormal distribution (Fig. 12). This is to say, the
spacing data of large discontinuities with statistical error obtained
from worksites or outcrops could approximately comply with the
lognormal distribution according to the correction model fy(x)
proposed in this study. That proves to a great extent that the
correction model f,(x) is appropriate to describe the distribution
regularity of spacing of large discontinuities.

4.2. Verification with Monte Carlo simulation

4.2.1. Single set of discontinuities

We consider the most simple distribution situation: only one set
of discontinuities on the exposure which is 100 m long and 50 m
wide. According to the previous results (Baghbanan and Jing, 2007,
Mauldon, 1998; Min et al., 2004), generally, the distribution of
center points of discontinuities approximately follows the Poisson
process, namely a uniform random process in unit time or unit area.
Here we also use this distribution characteristic for the center
points of all discontinuities, and assume the density of center
points of discontinuities (the amount of center points per unit area)
is 3 m~2. It means there are 15,000 center points and corresponding
15,000 discontinuities on the exposure with an area of 5000 m>.
Fig. 13 depicts the distribution of all center points generated using
the Monte Carlo method according to the Poisson process. In this
model, the trace length of discontinuities follows the negative
exponential distribution. Here we assume the mean trace length of
the 15,000 discontinuities is 0.9 m; accordingly, the trace length
distribution parameter u = 1.11. These trace lengths are allocated to
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Fig. 9. The line graph of C corresponding to spacing ranging from 0 to xo (xo = 0.3). The
function C actually represents the proportion between the amount of small disconti-
nuities with spacing value x (0 < x < Xp) and the total amount of discontinuities with
spacing value x (0 < x < Xg). This figure demonstrates that the spacing of small
discontinuities is the dominant part in the region close to zero.



24 J. Ye et al. / Journal of Structural Geology 40 (2012) 17—28

7.2 s

6.4 ™

56

4.8 \

3.2

g

2.4

Probabilistic density

1.6 \

0.8 p

!

0.0
0.0 0.05 0.1 0.15 0.2 0.25 0.3
Spacing (m)
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the center points of discontinuities randomly. Then a simple
discontinuity network model is formed after postulating all the
discontinuities have the same angle of 45° with the horizontal
direction.

In this study, only the scan-line method is adopted to measure
the spacing here. The direction of scan-line, either horizontal or
oblique, is expressed by y = kx + E, where k is the slope of scan-
line, E is the intercept on the longitudinal axis. In measurement,
only the spacing of those discontinuities longer than the critical
trace length lp and intersecting with the scan-line are measured. All
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Fig. 11. Line graph of the probabilistic density function f5(x). fs(x) is the distribution of
the spacing of large discontinuities ranging from 0 to xo. It is demonstrated that the
frequency of the spacing of large discontinuities is apparently small in the region close
to zero; while it is significantly large in the region close to xo.
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Fig. 12. Comparison between f>(x) and ideal lognormal distribution (xo = 0.3, u = 0.4,
lo = 0.5, L = 100, A = 1.73). The f5(x) can be almost perfectly consistent with the
lognormal distribution (u = —0.72, ¢ = 0.9) except the region close to zero.

measurement procedures follow the popular method suggested by
ISRM (Brown, 1981) and the procedures stated in Fig. 3, and are
implemented by the self-programmed code and the mathematical
software Matlab and Maple.

First of all, the scan-line is horizontal. The intercept E is set as
45 m, 35 m, 25 m and 15 m respectively. According to the defi-
nition of the L, it is 100 m. In simulated measurement, the critical
trace length [y is assumed as 0.5 m and 0.8 m respectively for each
intercept. Here, we obtain the value of xg through measuring the
spacings of discontinuities shorter than critical trace length Iy in
a window corresponding to each scan-line (Fig. 13). For each
intercept E and critical trace length Iy, a set of spacing of
discontinuities longer than [y is obtained through the developed
source code. Then the mean spacing and the variance can be
determined. Finally, the true distribution parameter A of spacing
of all discontinuities can be determined according to Eq. (21). The
results of Monte Carlo simulation for this simple model are listed
in Table 1.

For the cases of an oblique scan-line (® in Fig. 13), taking similar
procedures as for the horizontal scan-line, we also can obtain
a series of data and the true distribution parameter A which is listed
in Table 2.

From the Table 1 and the Table 2, it is easy to find that the
parameter A is in the range of 1.91—2.45. Its mean value is 2.104, and
the variance is 0.0255. From the variance, we know that the
concentration degree of A is high. Another property of the real
distribution parameter 4 found from the Table 1 and Table 2 is that
will increase slightly when the critical trace length [y increases from
0.5 m to 0.8 m.

We further measure the spacing of all discontinuities which
intersect with each scan-line with different intercept E. The
purpose is to check whether the values of 1 listed in Table 1 and
Table 2 can really describe the distribution regularity of spacing of
all discontinuities on the exposure modeled. This kind of distribu-
tion of spacing of all discontinuities intersecting with scan-lines
(without considering the critical trace length lp) is the true distri-
bution of spacing in the model. It is referred to as the true complete
distribution of the spacing.

All the spacing of discontinuities intersecting with the horizontal
scan-lines y = E in the model are measured and recorded, where the
intercept E are set as 45 m, 40 m, 35 m, 30 m, 25 m, 20 m, 15 m, 10 m
respectively. There are eight sets of spacing data, and in total about
4000 spacings are obtained from the model. The histogram of the
eight sets of spacings is shown in Fig. 14. Through statistical fitting, it
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Fig. 13. Distribution of center points of all discontinuities in model. The center points of all discontinuities follow Poisson process. The density of center points is assumed as 3 m
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The solid window is used to determine the value of xo through measuring the spacing of small discontinuities shorter than critical trace length Io.

is found that the negative exponential distribution (the pdf is
f(x) = Ae=*) can best describe it when the mean value and variance
is 0.3715 m, 0.1426 respectively. Finally, according to the statistical
theory, we know that the true complete distribution parameter of
Spacing Arye is 2.692.

Comparing the values of predicted 4 listed in Table 1 and Table 2
with Ague, We find that the differences between the A and Aye are
significant. The differences vary in the range of 17%—29%. Another
point is that all the A values obtained by the correction theory
proposed in the previous sections are smaller than Agye. The main
reason for this phenomenon is that there is only one set of
discontinuities. Additionally, some problems always exist in the
model due to some unavoidable flaws when allocating the trace
lengths to center points of discontinuities randomly. For example,
the spacing of two large discontinuities (the trace lengths can be
longer than 4 m) may be very small. In fact, that is not likely to
exist in the real world. All these factors may make the small
spacing account for a larger proportion in the model, and the
mean spacing become smaller than that of a normal model which
may exist in nature.

Many spacing data have been obtained for different intercepts E
and different critical trace lengths lp. Here, only the distribution
histograms of the spacing obtained by the scan-lines k = 0, E = 35/
25 m, lp = 0.8 m are shown and analyzed as examples for the sake of
simplicity (Fig. 15).

From Fig. 15 (a), (b), it is not difficult to conclude that the cor-
rected probabilistic density function fo(x) proposed in this study is
better than the lognormal distribution to describe the true distri-
bution of spacing obtained from the model when the critical trace
length [y is considered. This proves to a great extent that the
correction theory considering the statistical error presented in this
study is acceptable.

Table 1
Results of Monte Carlo simulation for the model only containing one set of
discontinuities (the slope of scan-line k = 0).

E(m) L(m) Ilp(m) Xo(m) Mean Variance 2 Difference
spacing (m) of spacing with Agre (%)
45 100 0.5 0252 0.4447 0.0267 193 283
100 0.8 0.230 0.505 0.0277 2.07 231

35 100 05 0.261 0.4017 0.0249 198 264
100 08 0.312  0.4475 0.0265 222 175
25 100 0.5 0.242 0.3644 0.0276 212 212
100 0.8 0323 04110 0.0309 230 146

15 100 0.5 0.217
100 0.8 0.353

04110 0.355 201 253
0.4745 0.0334 2.14 205

4.2.2. Multiple sets of discontinuities

There are frequently several sets of discontinuities on an
exposure of field sites or outcrops, rather than only containing one
set. In this section, a complex model is generated to verify the
correction theory presented in previous sections, and to check
whether the result determined according to Eq. (21) can describe
the statistical regularity of the spacing of all discontinuities.

Four sets of discontinuities on an exposure (100 m long x 50 m
wide) are considered. As in the above simple model, we continue to
assume the density of center points of discontinuities is 3 m~2, and
the four sets of discontinuities have the same number of traces on
the exposure. This means that there are 3750 traces for each set of
discontinuities. The center points of all four sets of discontinuities
follow the Poisson’s process. The trace lengths of all four sets of
discontinuities follow the negative exponential distribution, the
mean trace lengths are 1.5 m, 2.0 m, 2.5 m, and 3.0 m respectively.
The angles between the four sets of discontinuities and the hori-
zontal axis are 30°, 45°, 90°, 135° respectively. The distribution of
the four sets of discontinuities on the exposure modeled is
sketched in Fig. 16.

In this complex model, there are four sets of discontinuities with
different mean trace length. Therefore, the distribution parameter
of trace length u for this complex model needs to be determined by
the complete trace length distribution of the four sets of disconti-
nuities. Through a simple statistical analysis, the mean trace length
of this complex model is determined as 2.25 m, then the parameter
w is 0.444. Here, for the sake of simplicity, only the horizontal scan-
lines are adopted to measure the spacing of discontinuities. Four
intercepts E (45 m, 35 m, 25 m, and 15 m respectively) and three
critical trace lengths Iy (1.5 m, 1.8 m and 2.0 m) for each intercept
are designated in measuring. Finally, taking a similar method and
procedures used for the single set of discontinuities model, a series
of spacing data and results are obtained which are listed in the
Table 3

Table 2
Results of Monte Carlo simulation for the model just containing one set of discon-
tinuities (the slope of scan-linek = tan(150°) = —v/3/3).

E(m) L(m) Ilp(m) Xxo(m) Mean Variance A Difference

spacing (m) of spacing with Agrye (%)
45 78 0.5 0.247 0.3101 0.0257 229 184
78 0.8 0360 0.3553 0.0306 245 899
35 60.6 0.5 0.255 0.4503 0.0262 191 29.0
606 0.8 0337 0.5237 0.0305 2.04 242
25 433 05 0.239 0.5276 0.0280 195 27.6
433 0.8 0315 0.5992 0.0341 2.05 238
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From the Table 3, we know that the predicted true distribution
parameter 2 is in the range of 1.62—1.69. The mean value of 1 is
1.6475, and the variance is 8.3864 x 10~% The small variance
indicates that there is a very high concentration degree for A.

All the spacing of discontinuities intersecting with the hori-
zontal scan-lines y = E (E = 45 m, 35 m, 25 m, 15 m respectively)
are measured for determining the true complete distribution
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Fig. 15. Distribution histograms of the spacing measured by the four scan-lines: (a)
k=0E=35m,lo=08m,(b)k = —3/3, E=35m, o= 0.8 m.

Fig. 16. Sketched distribution of the four sets of discontinuities on the exposures
modeled.

parameter of spacing Agye Of this complex model. Four sets of
spacing data, in a total of about 2000 spacings, are obtained from
this complex model. The histogram of the four sets of spacing is
shown in Fig. 17. Through the statistical fitting, it is also found that
the negative exponential distribution can best describe the statis-
tical regularity when the mean value and variance are 0.5821 m,
0.3427 respectively. Finally, according to the statistical theory, the
true complete distribution parameter of spacing Agyue Of this
complex model is determined as 1.718.

The differences between the Ay e Of this complex model and the
A predicted by the correction theory presented in this study are in
the range of 1.63%—7.45% (Table 3). The mean difference is only
4.1%. This again proves that the correction theory and the corrected
probabilistic density function f,(x) are reasonable and acceptable.

Here, for simplicity, we only illustrate the spacing obtained by
the scan-lines (a) k=0,E=45m,lp =18 mand (c) k=0, E =25m,
lo = 1.8 m. Their distribution histograms are shown in Fig. 18. From
Fig. 18 (a), (b), it is concluded that the corrected probabilistic
density function fo(x) proposed in this study can well describe the
statistical regularity of the spacing of large discontinuities longer
than the critical trace length l,.

5. Discussion

Discontinuities exist in rock masses with various shapes in 3D
space. Generally, the circle and ellipse are the popular shapes used
in research to approximately study the mechanical and hydraulic
properties of the fractured rock masses. Whatever the shapes of
discontinuities are, if the discontinuities intersect with the outcrop
exposures, then the discontinuities will be seen as straight lines on
exposures. Actually, the vertical distances between these lines are
not the true spacing, but the apparent spacing. Therefore, when
measurement is carried out on field sites, some modification should
be made for these apparent spacing to obtain the real spacing.

Table 3

Results of Monte Carlo simulation for complex model containing four sets of
discontinuities (the slope of scan-line k = 0). There are four intercepts, and three
critical trace lengths for each intercept are designated (u = 0.444).

E(m) L(m) Ip(m) Xxo(m) Mean Variance 1 Difference
spacing (m) of spacing with Agre (%)
45 100 15 0.6731 0.6479 0.2966 1.63 5.10
100 1.8 0.7243 0.6748 0.2097 1.67 279
100 2.0 0.8030 0.6957 0.1974 1.69 1.63
35 100 15 0.6457 0.6859 0.2048 1.59 745
100 1.8 0.6978 0.7075 0.2344 1.64 4.54
100 2.0 0.8423 0.7342 0.2976 164 454
25 100 15 0.6745 0.6537 0.3452 162 5.70
100 1.8 0.7460 0.6908 0.3578 1.65 3.96
100 2.0 0.8021 0.7215 0.2876 1.66 3.38
15 100 15 0.6635 0.6465 0.1198 1.63 5.10
100 1.8 0.7340 0.6811 0.2589 1.66 3.38
100 2.0 0.7843 0.7058 0.3004 1.69 1.63
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Fig. 17. Histogram of the spacing of all discontinuities intersecting with the four scan-
lines in the complex model. The critical trace length Iy is not considered.

If the dip angle of discontinuities is « (0<« < 90°), the angle
between discontinuities plane and the exposure is § (0<f < 90°),
and distance of scan-line between two discontinuity lines on
exposure is expressed as [, then the relationship between the
apparent spacing and the true spacing is expressed as:

Sprrue = Isina sinf (22)

where spyrye is the true spacing of discontinuities.
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Fig. 18. Distribution histograms of the spacing measured by the four scan-lines: (a)
k=0,E=45m,lp=18m,(b)k=0,E=25m,[p =18 m.

On a natural exposure, there are usually several sets of discon-
tinuities. The discontinuities belonging to the same set are parallel
or approximately parallel with each other. The spacing should be
measured set by set.

A great number of previous research results indicate that the
trace length of all discontinuities on an exposure essentially follows
the negative exponential distribution. However, because some
small discontinuities and all micro discontinuities are ignored in
measurement, the trace length of discontinuities generally do not
follow the negative exponential distribution, but may be follow the
lognormal distribution or other similar distributions. Therefore, the
mean value of the trace lengths collected from exposures is not the
real mean trace length. Fortunately, some methods to determine
the real mean trace length have been proposed in some previous
literature (Zhang and Einstein, 1998; Mauldon, 1998; Mauldon
et al.,, 2001). From the analysis in previous section, we know that
the mean trace length is a significant parameter in the correction
theory proposed in this study; and the true distribution parameter
A is sensitive to it. Therefore, it is very important to determine the
mean trace length exactly in the application of the correction
theory in practical engineering.

The maximum spacing xo of small discontinuities shorter than
critical trace length [ is relatively difficult to determine exactly in
practice due to the fact that we almost ignore all those small
discontinuities. Fortunately, the real distribution parameter 1 is
very insensitive to xo. Therefore, small errors in xo will not create
much error in A. In application, in order to determine a reasonable
value of xo, we must also additionally measure some spacing of
small discontinuities shorter than the Iy on an exposure. The value
of xp could be designated as 1.05 times of the maximum spacing
among these measured spacing of small discontinuities.

In this study, the correction theory is only verified adopting the
2D models generated by Monte Carlo simulation. In fact, the
correction theory is applicable for 3D model which is most close to
practical rock engineering. Verification of the correction theory
proposed in this study by using the 3D Monte Carlo model is an
interesting topic that needs to be further studied in future.

As the basis of the correction theory proposed in this study, an
assumption that the distribution of the spacings of small discon-
tinuities whose value is x (0 < x < xg) could be described by Eq. (7)
is made. Although the hypothesis is established based on the
engineering experience, and from the view of phenomenology, Eq.
(7) can well reflect the spacing distribution regularity of small
discontinuities. An important evidence is that the distribution
shape of the 712 spacing data of small discontinuities obtained
from a cut surface (320 mm x 70 mm) of a rock block obtained by
Gomez and Laubach (2006) using the petrographic microscope is
basically consistent with Eq. (7). Hence, the rationality of the
assumption seems to be acceptable. Furthermore, from the results
of Monte Carlo simulation, the corrected probabilistic density
function fo(x) can always well describe the statistical regularity of
spacing obtained from the simple or complex model when the
critical trace length Iy is considered. That suggests again that the
assumption is acceptable.

6. Conclusion

The mechanical and hydraulic properties of fractured rock
masses are generally controlled by the distribution characteristics
of discontinuities developed randomly in rock masses. Field
measurement is the only way to obtain the distribution charac-
teristics of discontinuities in practical engineering. However, in the
field measurement at outcrops, the data of spacing and length
obtained from outcrops do not comply with the negative expo-
nential distribution because of some statistical errors or sampling
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errors. In this study, a new correction model is proposed to describe
the distribution regularity of the spacing data with statistical errors
obtained from outcrops. Based on the correction model, a new
method is presented to determine the true distribution parameter
of spacing of all discontinuities (negative exponential distribution).

The analysis results indicate that the real distribution parameter
A is moderately sensitive to the parameter u (reciprocal of mean
trace length) and the critical trace length lp; and completely
insensitive to the maximum spacing of small discontinuities xg.
These kinds of sensitivity characteristics of A require that the mean
trace length must be exactly determined and the critical trace
length lp must be designated as a reasonable value according to the
real situation on outcrops. Another conclusion from the sensitivity
analysis is that the length of scan-line should be longer than 5 m;
otherwise, A can not converge to its true value from the view of pure
theory. The verification is performed for the correction theory and
the corrected probabilistic density function f,(x) by adopting
a simple 2D model only containing a set of discontinuities and
a complex 2D model containing four sets of discontinuities gener-
ated by the Monte Carlo Method. The simulation results of the two
models indicate that the correction theory is reasonable and reli-
able, and the corrected probabilistic density function f(x) can well
describe the statistical regularity of the spacing of discontinuities
when the critical trace length [y is considered.
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