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Abstract
It is known that there are great types of materials, especially the geotechnical materials, e.g., rock, soil, with obvious dif-
ferences in elastic modulus and Poisson’s ratio under tension and compression in nature. However, the current investigation 
for this type of material is still not sufficient. In this study, the elastoplastic analytical solutions of stress and displacement 
for the circular ring expansion problem are derived based on the SMP yield criterion and bi-modulus theory. The effect of 
the bi-modulus characteristics of materials on the distribution of stress, strain, and displacement, and the effect of friction 
angle on the critical internal pressure P

c
 and the ultimate internal pressure P

u
 in the expansive circular ring are then further 

investigated. It is shown by the analytical results that the distribution pattern and the magnitude of stress, strain, and displace-
ment in the expansive circular ring, as well as the critical internal pressure P

c
 , the ultimate internal pressure P

u
 applied on 

the internal radius of the circular ring are all significantly affected by the modulus ratio, i.e., R = E
t
∕E

c
= �

t
∕�

c
 . ( E

c
 and E

t
 

are respectively the elastic modulus under compression and tension;�
c
 and �

t
 are respectively the Poisson ratios under com-

pression and tension). Based on the proposed analytical solution, the effect of the SMP yield criterion and Mohr-Coulomb 
yield criterion on the stress in the plastic zone in the circular ring is compared. It is found that the stress in the plastic zone 
in the circular ring is overestimated by the Mohr-Coulomb yield criterion.

Keywords  Circular ring expansion problem · Bi-modulus theory · SMP yield criterion · Mohr-Coulomb yield criterion · 
Elastoplastic analytical solution · Tensile elastic modulus

Introduction

Circular ring expansion theory has been widely used in the 
practice of engineering; for example, the pressuremeter test 
(Clarke 1994; Yu and Mitchell 1999) was widely adopted 
to measure the deformation modulus of foundation, and the 
bearing capacity of foundation could be further estimated. 
According to the circular ring expansion theory, the stability 
and deformation of tunnels were evaluated by Teraghi and 
Richart (1952) and Hoek and Brown (1980), and the bearing 
capacity of piles was estimated by Randolph et al. (1979). 
Therefore, the study on the circular ring expansion problem 

for geotechnical medium has a great practical value for the 
optimum design in civil engineering.

The circular ring expansion theory was first proposed by 
Bishop et al. (1945) and used to study the metal indentation 
problem. It has then been applied in the field of geotechnical 
engineering by Menard (1957) and Gibson and Anderson 
(1961). Vesic (1972) had given a general solution to the 
circular ring expansion problem and extended it to many 
other fields, such as the pile foundation design. Besides, Yu 
(2000) also has made a systematic contribution in this field.

Currently, the elastic analytical solution for the circular 
ring expansion problem can be easily found in literature, 
such as Timoshenko et al. (1970). However, there are only a  
few elastoplastic analytical solutions for this problem, due to  
the fact it is difficult to select a suitable yield criterion that is 
applicable and easy for theoretical derivation. For example,  
for metal materials, most predecessors established the elas-
toplastic solutions based on the Tresca yield criterion (Hill  
1950; Xu and Liu  1995). For geotechnical materials, the 
elastoplastic analytical solutions were mostly based on the 
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Mohr-Coulomb (Florence and Schwer 1978) or Hoek-Brown yield 
criterion (Brown et al. 1983). Besides, based on the unified  
strength theory, Wang et al. (2019) derived a formulation of 
stress in a double-layered think-walled cylinder with uniform 
internal pressure by considering the bi-modulus of material. 
Zhu et al. (2020) proposed a unified elastoplastic solution for 
a double-layered or multilayered cylinder by introducing the 
ratio of the tensile strength �t to the compressive strength �c . 
In addition, Gao et al. (2017) established a modified semi-
analytical model to study the mechanical response of a bi-
modulus cylinder placed in a symmetrical temperature field. 
However, since the influence of intermediate principal stress 
�2 was not considered in most of the above yield criteria, 
it brought great convenience for the derivation of a plastic 
analytical solution. However, the reliable demonstrations by 
Single et al. (1998) and Sãyao and Vaid (2011) showed that 
the intermediate principal stress �2 had a significant influ-
ence on the strength of materials. Therefore, it is of practical 
value to establish the elastoplastic analytical solution for the 
circular ring expansion problem based on the yield criterion 
that considers the effect of intermediate principal stress �2.

Most importantly, for the problem of circular ring 
expansion, materials were all treated as an ideal elastoplastic 
material with the same elastic modulus and Poisson’s ratio 
under tension and compression in most previous works. 
However, the elastic modulus and Poisson’s ratio of many 
natural materials are markedly different under tension and 
compression, such as concrete, ceramics, rock, and other 
materials (Ye et al. 2009, 2012; Zhang et al. 2018) in our 
natural world. If this kind of property of materials is ignored, 
and the classical elastic theory is still used for determining 
the deformation of these materials, a considerable error 
would be caused. For example, Sundaram and Corrales 
(1980) found that, when the modulus ratio, i.e., Ec∕Et , 
is equal to 10, the error on the deformation between the 
results obtained by considering the modulus difference of 
materials under tension and compression, and the result 

predicted by the classical solution could reach 40% ( Ec 
and Et are respectively the elastic modulus of materials 
under compression and tension). Therefore, it is essential 
to consider the property of bi-modulus materials in the 
analytical solution for the circular ring expansion problem.

In view of the shortcomings in the previous works, this 
study establishes an analytical solution for the circular ring 
expansion of ideal elastoplastic materials based on the bi-
modulus theory proposed by Ambartsumyan (1986) by intro-
ducing the SMP criterion to consider the effect of intermedi-
ate principal stress (Matsuoka and Nakai 1974). There are 
three reasons for selecting the SMP yield criterion in this 
study. Firstly, the SMP yield criterion is evolved from the 
Mohr-Coulomb yield criterion. In the π plane, the yield sur-
faces of the two yield criteria are very close; especially at 
the six corners, the SMP yield surface is circumscribed with 
the Mohr-Coulomb yield surface, as illustrated in Fig. 1b. 
It is shown that the applicability of the SMP yield criterion 
is as good as the Mohr-Coulomb yield criterion. Secondly, 
the effect of intermediate principal stress is considered in 
the SMP criterion. Thirdly, the expression form of the SMP 
yield criterion is convenient for the mathematical derivation 
due to the smoothness of its yield surfaces in the π plane. 
In summary, due to the consideration of the effect of the 
intermediate principal stress, and the bi-modulus property 
of materials, the analytical solution proposed in this study 
will be more practical than the previous analytical solutions 
in engineering.

Yield criterion

The SMP is an excellent yield criterion with a simple form 
and clear physical meaning. The expression of this criterion 
in 3D principal stress space and plane strain is introduced 
in the following.

Fig. 1   Geometry of SMP yield 
surface in the principal stress 
space and on the π plane. a 
Principal stress space. b π plane
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SMP yield criterion in 3D principal stress space

In the Mohr-Coulomb yield criterion, when the ratio of shear 
stress to normal stress on a shearing plane satisfies the follow-
ing equation, the material will yield, as illustrated in Fig. 2a.

where � and �n are the shear and normal stress on the shearing 
plane, respectively; �ij represents the friction angle of mate-
rials. �i , �j are the maximum and minimum principal stress 
when yielding.

Based on the Mohr-Coulomb yield criterion, Matsuoka and 
Nakai (1974) proposed the SMP yield criterion, in which the 
influence of the intermediate principal stress �2 was consid-
ered. Materials will be judged as being yield state by the SMP 
yield criterion when the ratio of shear stress to normal stress 
on a spatial shearing plane reaching a certain value (Luo et al. 
2010), and satisfying the following equation:

where �SMP and �SMP are the shear stress and normal stress 
on the spatial shearing plane when materials reaching yield 

(1)

�
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�i − �j

2
√
�i�j

=
(�i − �j)∕2�

((�i + �j)∕2)
2 + ((�i − �j)∕2)

2

= tan�ij

�SMP

�SMP

=
2

3

√(
tan�12

)2
+
(
tan�23

)2
+
(
tan�13

)2

=
2

3

√
(
�P3

�P3

)
2

+ (
�P2

�P2

)
2

+ (
�P1

�P1

)
2

=
2

3

�
(
�1 − �2

2
√
�1�2

)
2

+ (
�2 − �3

2
√
�2�3

)
2

+ (
�1 − �3

2
√
�1�3

)
2

(2)=

√
I1I2 − 9I3

9I3
= Constant

state by the SMP yield criterion, respectively; �1 , �2 , �3 are the 
principal stresses when yielding.

Under the situation of triaxial compression (𝜎1 > 𝜎2 = 𝜎3) , 
Eq. (2) can be simplified as follows:

Since a Mohr-Coulomb material meets the following equa-
tion in the triaxial compression test:

Under the situation of triaxial compression, the Mohr- 
Coulomb yield surface and the SMP yield surface coincide at 
a vertex on the � plane. As a consequence, �SMP∕�SMP in Eq. 
(3) is equal to �∕�n in Eq. (4) under this situation. Substituting 
Eqs. (3) and (4) into Eq. (2), the relationship between �SMP

�SMP

 and 
the friction angle � can be obtained.

where � represents the internal friction angle of materials that 
can be tested by the triaxial compression test; I1, I2 , and I3 are 
the stress invariants when yielding, and their expressions are 
as follows:

The general expression of the SMP yield criterion can be 
obtained by simplifying Eq. (5):

(3)
�SMP

�SMP

=

√
2

3

�1 − �3√
�1�3

= Constant

(4)
�

�n

= tan� =
�1 − �3

2
√
�1�3

(5)
�SMP

�SMP

=

�
I1I2 − 9I3
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=

2
√
2

3
tan�

(6)

⎧⎪⎨⎪⎩

I1 = �1 + �2 + �3

I2 = �1�2 + �2�3 + �1�3

I3 = �1�2�3

(7)F
(
I1, I2, I3

)
=

I1I2

I3
− 8tan2� − 9 = 0

Fig. 2   Shear stress and normal 
stress on the shearing plane 
when yielding. a Mohr- 
Coulomb yield criterion. b SMP 
yield criterion
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Because the yield criterion given by Eq. (7) is only appli-
cable to non-cohesive granular materials, i.e., the materials 
without cohesion, i.e., C = 0 . To overcome this shortcoming, 
Matsuoka and Nakai (1974) further proposed that the yield 
surface moves a distance �0 = Ccot� , to the negative axis 
direction along the principal stress axis � , as demonstrated 
in Fig. 3. After this moving, a new coordinates �̂ − 0̂ − �̂  
can be established. The relationship between �̂ − 0̂ − �̂  and 
� − 0 − � can be expressed by Eq. (8).

where �0 is the moving distance of the SMP yield surface, 
which is related to the cohesion of material, and its expres-
sion is

By substituting Eq. (8) into Eq. (7), the extended SMP 
yield criterion can be formulated as

where the expressions of Î1, Î2 , and Î3 are as follows:

SMP strength formula under plane strain

Since the circular ring expansion problem is a typical plane 
strain problem, it is necessary to find the expression of the 

(8)
{

�̂ = � + �0

�̂ = �

(9)�0 =
C

tan�
= Ccot�

(10)F
(̂
I1, Î2, Î3

)
=

Î1Î2

Î3

− 8tan2� − 9 = 0

(11)
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Î1 = �̂1 + �̂2 + �̂3 = I1 + 3�0
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2

Î3 = �̂1�̂2�̂3 = I3 + I2�0 + I1�0
2
+ �0

3

SMP yield criterion under the plane strain condition. Satake 
(1976) proposed the stress expression for the failure of soil 
under the strain condition according to the associated flow 
law and SMP strength criterion; the expression was given 
as follows:

Substituting Eq. (12) into Eq. (6), the stress invariants 
expressed only by �1, �3 can be obtained:

Substituting Eq. (13) into Eq. (7), the expression of the 
SMP yield criterion under plane strain is obtained as follows:

For the materials with C ≠ 0 , the principal stresses must 
be translated according to Eqs. (8), (9) and (14) must be 
modified as follows:

where K is a constant related to the friction angle of 
materials.

Description of the circular ring expansion 
problem

Under the condition of plane strain, when the ratio of exter-
nal radius r = b to the internal radius r = a of the ring is 
greater than 1.2, it can be called a thick-wall ring, as shown 
in Fig. 4. The ring is centrosymmetric, and its thickness is 
constant. If the load distribution on the internal circular is 
also symmetrical to the central axis and the magnitude of the 
load is uniform, it can be treated as a plane strain axisym-
metric problem. For this kind of problem, all components 
can be expressed in a polar coordinate system (r, �) . Moreo-
ver, the stress, strain, and displacement are only the function 
of the radius r , i.e.,�r(r),��(r),�r(r),��(r) . Meanwhile, there is 
no shear stress at any point in the ring due to the symmetric 
characteristic of the circular ring, i.e.,�r� = 0 . Additionally, 
due to the fact that only radial uniform expansion or con-
traction appears in the ring, there is only radial displace-
ment, i.e.,u

�
(r) = 0 . It is noticed that the displacement in 

the z-direction is inexistent under plane strain condition, i.e., 
uz(r) = 0 is always satisfied.
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√
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√
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√
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Fig. 3   Extended SMP yield criterion for cohesive materials ( C ≠ 0)
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Basic equations

The unknown variables in the axisymmetric plane strain prob-
lems, i.e., �r , �� , �r , �� , ur , must satisfy the following basic 
equations (Yu 2000).

1.	 The differential equations for stress equilibrium are as 
follows:

where r is the radial distance to the center; �r , �� and �z are the 
radial, circumferential, and axial stress, respectively.

2.	 The geometric equations are as follows:

where ur is the radial displacement.

3.	 The compatibility equation of deformation is:

According to the generalized elastic law, the relationship 
between stress and strain can be expressed as follows:

The matrix form of Eq. (19) is expressed as follows:

(16)
{

d�
r

dr
+

�
r
−�

�

r
= 0

�
r�
= 0

(17)

{
�
r
=

du
r

dr

�
�
=

u
r

r

(18)r
d�

�

dr
+ �

�
− �r = 0

(19)
[
�r

�
�

]
=

[
a11 a12
a21 a22

][
�r

�
�

]

(20){�} = [C]{�}

(21)[C] =

[
a11 a12
a21 a22

]

where [C] is the compliance matrix, aij = f (E, �), (i, j = 1, 2) . 
E, � are the elastic modulus and Poisson’s ratio of materials 
under compression. When the bi-modulus characteristics of 
materials are considered, aij should be defined by Ec,Et, �c 
and �t i.e., aij = f (Ec,Et, �c, �t) . According to the bi-modulus 
theory (Ambartsumyan 1986), to satisfy the requirement of 
symmetry in the matrix [C] , the assumption of �t∕Et = �c∕Ec 
should be satisfied among Ec , �c , Et , and �t . Otherwise, the 
elastoplastic analytic solution can’t be derived.

For the axisymmetric circular ring expansion problem 
under plane strain shown in Fig. 4, the expression of aij can 
be given as (Luo et al. 2004; Wang et al. 2019):

By substituting Eq. (22) into Eq. (19), the relationship 
taking into consideration of the bi-modulus characteristic 
of materials between stress and strain is obtained as follows:

Elastoplastic solution derivation

Elastic solution

As shown in Fig. 4, there is a pressure P applied on the inner 
wall ( r = a ) of the ring. If the ring is in the stage of elastic 
deformation, the stress �r and ||��|| in the ring will increase 
with the pressure P. To obtain the stress solution in the ring 
at the elastic deformation stage, Eq. (19) is substituted into 
Eq. (18). Then, a new differential equation for stress equi-
librium can be established:

Meanwhile, according to Eq. (16), the relationship 
between �r and �

�
 can be expressed as follows:

By substituting Eq. (25) into Eq. (24), Eq. (24) can be 
rewritten as follows:
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Fig. 4   Illustration of the axisymmetric circular ring expansion prob-
lem under plane strain
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The general solution of Eq. (26) for the radial stress is:

where A and B are the integration constants, s is defined by:

where s is a parameter reflecting the effect of the bi-modulus 
characteristic of materials. Furthermore, the circular ring 
illustrated in Fig. 4 needs to satisfy the following boundary 
conditions:

Substituting the boundary conditions Eq. (29) into Eqs. (26) 
and (27), the elastic stress solution in the ring for bi-modulus 
materials is established as follows:

Additionally, according to Eqs. (23) and (30), the elastic 
strain solution in the expansive ring for bi-modulus materials 
can be further obtained as follows:

Substituting Eq. (31) into Eq. (17), the elastic radial dis-
placement solution in the ring expansion for bi-modulus mate-
rials can be expressed as follows:

If the bi-modulus characteristic of materials is not consid-
ered, Eqs. (29) and (31) can degrade to the following classical 
elastic solutions (Xu and Liu 1995).
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Effect of the tensile and compressive elastic parameters 
on the stress

In this section, a circular ring with an internal radius 
a = 0.2m and an external radius b = 0.5m is taken as an 
example; the distribution of stress, strain, and displacement 
along the radius is plotted. As illustrated in Fig. 5, the radial 
stress �r and the circumferential stress �

�
 both reduce with 

the increase of the radius r . When r reaches the outer radius 
r = b , �r tends to 0, but �

�
 is not zero. Secondly, it is found 

that the distribution pattern of �r and �
�
 along the radius is 

not influenced by the modulus ratio R , but the magnitudes 
of �r and �

�
 are significantly affected by the R . Besides, 

when the radius r is in the range (0.285m, 0.500m) , there 
is a positive relationship between �r and R. However, if the 
radius r is in the range (0.200m, 0.285m) , there is a negative 
relationship between �r and R. It is indicated that the circum-
ferential stress near the inner wall is underestimated, and the 
circumferential stress near the outer wall is overestimated 
without considering the difference of tensile modulus and 
compressive modulus of materials.

Effect of the tensile and compressive elastic parameters 
on the strain

It is shown in Fig. 6 that �r and �
�
 are both reduced with 

the increasing of the radius r , and the bi-modulus charac-
teristic of materials has a significant effect on the strain 
distribution in the circular ring. As illustrated in Fig. 6, 

when r is in the range of (0.200m, 0.500m) , �
�
 increases 

significantly with the decrease of the parameter R , but 
the distribution and magnitude of �r are not affected by 
the increase of R . Summarily, the circumferential strain �

�
 

and radial strain �r in the ring are underestimated without 
considering the difference between tensile modulus and 
compressive modulus of materials.
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Effect of the tensile and compressive elastic parameters 
on the radius displacement

As can be seen in Fig. 7, the modulus ratio R has a sig-
nificant influence on the radial displacement ur . Summar-
ily, it is very necessary to establish an analytical solution 
considering the bi-modulus characteristics of materials in 
the circular ring expansion problem.

Elastoplastic solution

If the material is an ideal elastoplastic material as shown 
in Fig. 8a, when the internal pressure on the inner wall sat-
isfies P = Pc ( Pc is the critical internal pressure at which 
plastic deformation is just occurring on the inner wall), a 
plastic zone just appears at the internal radius i.e., r = a , 
as shown in Fig. 8b. It has been known that Eqs. (14) and 
(15) must be satisfied if the SMP yield criterion is used 
under plane strain condition. By substituting Eq. (30) into 
Eq. (15), the following expression is obtained:

(35)
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)
− K
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)
= (K − 1)�0

Fig. 5   Effect of the parameter R on the stress distribution in the ring 
( R = E

t
∕E

c
= �

t
∕�

c
,P = 5MPa,E

c
= 60GPa, �

c
= 0.25, a = 0.2m, b = 0.5m)

Fig. 6   Effect of the parameter R on the strain distribution in the ring 
( R = E

t
∕E

c
= �

t
∕�

c
,P = 5MPa,E

c
= 60GPa, �

c
= 0.25, a = 0.2m, b = 0.5m)

Fig. 7   Effect of the parameter R on the radial displacement distribu-
tion along the radius of the ring ( R = E

t
∕E

c
= �

t
∕�

c
,P = 5MPa,E

c

= 60GPa, �
c
= 0.25, a = 0.2m, b = 0.5m)
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By applying the following boundary condition, 
P = Pcatr = a , the critical internal pressure Pc can be deter-
mined as follows:

When the internal pressure P on the inner wall r = a 
increasing from Pc to the ultimate pressure Pu(under this 
pressure, the outer wall of the circular ring, i.e.,r = b , just 
enters the plastic state, as shown in Fig. 8c), the following 
boundary condition should be satisfied:

Substituting the SMP yield criterion under plane strain 
condition, i.e., Eqs. (14) and (15) into Eq. (16), the dif-
ferential equation of stress equilibrium for the circular ring 
expansion problem can be given as follows:

(36)Pc =
(K − 1)(b2s − a2s)�0

(Ks + 1)b2s + (Ks − 1)a2s

(37)
{

�
r
= P

u
, r = a

�
r
= P

c
, r = b

(38)
d�r

dr
+

(K − 1)�r

rK
+

(K − 1)�0

rK
= 0

The general solution of Eq. (38) for the radial stress is

where C′ is an integral constant. By introducing the bound-
ary condition Eq. (37) into Eq. (39), the expression of 
ultimate internal pressure Pu is obtained as follows:

As illustrated in Fig.  9, the modulus ratio 
R, i.e.,R = Et∕Ec = �t∕�c and the friction angle � of mate-
rials have a significant effect on the Pc and Pu . The criti-
cal internal pressure Pc and ultimate internal pressure Pu 
increase gradually with the increase of R . It is indicated that 
the critical internal pressure Pc and ultimate internal pres-
sure Pu would be overestimated without considering the bi-
modulus characteristics of materials.

(39)�r = C
�

r
−(

K−1

K
) − �0

(40)Pu =
(
Pc + �0

)(b
a

) K−1

K

− �0

Fig. 8   Diagram of the elasto-
plastic solution for a circular 
ring applied by a uniform inter-
nal pressure for ideal elasto-
plastic materials. a Stress-strain 
relationship. b Only elastic. c 
Fully plastic

Fig. 9   Effect of the bi-modulus characteristic of materials on the critical internal pressure Pc and the ultimate pressure Pu of the circular ring 
( (R = Et∕Ec = �t∕�c ). a Effect on Pc. b Effect on Pu
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Elastroplastic solution of stress

It is known that the above critical internal pressure Pc and ulti-
mate pressure Pu correspond to two very special cases. How-
ever, the most situation is that the elastic zone and the plastic 
zone coexist in the circular ring when Pc < P< Pu , as shown 
in Fig. 10a. As a result, the circular ring can be divided into 
two regions in this case, i.e., a < r ≤ rp in the circular ring is 
the elastic zone, as illustrated in Fig. 10b, and rp < r ≤ b is the 
plastic zone, as illustrated in Fig. 10c. On the interface r = rp , 
the continuity of displacement and stress must be guaranteed. 
For the plastic zone, except the radially outward pressure P on 
the inner wall r = a , there is another radially inward pressure 
q applied on the interface r = rp . Correspondingly, there is 
only a radially outward pressure q on the interface r = rp for 
the elastic zone.

When the internal pressure P on the inner wall r = a of the 
circular ring satisfies Pc < P< Pu , there are both elastic and 
plastic zones in the circular ring. In this case, the inner wall of 
the ring is being in the plastic state and satisfies the following 
boundary condition:

Substituting the above boundary condition into Eq. (39), the 
solution of radical stress �r can be obtained. Then, by further 
introducing the solution of �r into the SMP yield criterion, i.e., 
Eq. (15), the radical stress �r and circumferential stress �

�
 in 

the plastic zone can be obtained as follows:

(41)�r = Pp, r = a

(42)

⎧⎪⎨⎪⎩

�
r
=
�
P + �0

��
a

r

� K−1

K

− �0

�
�
=

1

K

�
P + �0

��
a

r

� K−1

K

−
K−1

K
�
0

Meanwhile, substituting the boundary condition Eq. (41) 
into Eq. (42), the radical stress q on the interface r = rp can be 
expressed as follows:

Besides, for the outside elastic zone shown in Fig. 10c, 
the interface r = rp is about to enter plasticity. As a con-
sequence, the following boundary condition is met at this 
moment:

Under this situation, the expression of stress in the elas-
tic zone can be given as follows:

Since the stress on the interface r = rp must be continu-
ous, the radical stress P applied on the internal wall, i.e., 
r = a can be formulated by substituting Eq. (43) into Eq. 
(46) as

In this section, the relationship between the internal 
pressure P and the radius rp of the elastoplastic interface 

(43)q =
(
P + �0

)( a

rp

) K−1

K

− �0

(44)�r = Pc, r = rp

(45)

⎧⎪⎨⎪⎩

�r =
Prp

s+1

rp
2s−b2s

(rs−1 −
b2s

rs+1
)

�
�
=

Prp
s+1

rp
2s−b2s

(srs−1 +
sb2s

rs+1
)

(46)Pc =
(K − 1)(b2s − rp

2s)�
0

(Ks + 1)b2s + (Ks − 1)rp
2s

(47)

P =

[
�0 +

(K − 1)(b2s − rp
2s)�

0

(Ks + 1)b2s + (Ks − 1)rp
2s

](
rp

a

) K−1

K

− �0

Fig. 10   Circular ring expansion with the coexistence of elastic and plastic zones. (a) = (b) + (c)
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is explored, the material parameters are set as C = 10MPa , 
Ec = 60GPa  ,  Et = 60GPa ,�c = 0.25,�t = 0.25,� = 45◦  . 
According to the rp − P relationship, as illustrated in 
Fig. 11, there is a positive relationship between rp and P. 
It is observed that the relationship is nearly linear when P 
is close to Pc , and it is nonlinear when P close to Pu.

Elastoplastic solution of radial displacement

As shown in Fig. 10, the circular ring has been divided into 
two zones (i.e., a < r ≤ rp is the plastic zone and rp < r ≤ b is 
the elastic zone). In this case, the following boundary condi-
tion should be satisfied on the elastoplastic interface r = rp:

Substituting Eq. (48) into Eq. (32), the radical displacement 
in the elastic zone can be obtained as

Due to the fact that the relationship between stress and strain 
in the plastic zone can’t be analytically given, because there is 
no one-to-one corresponding relationship between stress and 
strain at yielding state for ideal elastoplastic materials, it is 

(48)
{

�
r
= q, r = r

p

q = P
c

(49)ur = −
Pcrp

s+1

Ec(rp
2s − b2s)

{[(
1 − �c�c

)
− s(�c + �c�c)

] rs
s
+
[(
1 − �c�c

)
+ s(�c + �c�c)

]b2s
srs

}

difficult to give the analytical solution of the radical displace-
ment in the plastic zone in the circular ring. The solution of 
the radical displacement could usually be determined by the 
numerical methods.

Comparison of stress in the plastic zone 
between M‑C criterion and SMP criterion

SMP yield criterion was evolved from the Mohr-Coulomb 
yield criterion. Compared with the Mohr-Coulomb yield 
criterion, the SMP yield criterion considers the effect of 
the intermediate principal stress �2 . To explore the differ-
ence of stress between the two yield criteria for the circular 
ring expansion problem of ideal elastoplastic materials, the 
comparison between the results determined by Eq. (42) in 

this study and the following Eqs. (50) and (51) proposed 
based on the Mohr-Coulomb yield criterion Luo et al. (2010) 
is performed. The comparison results are demonstrated in 
Fig. 12.

Fig. 11   Effect of the internal pressure P on the radius rp of the elasto-
plastic interface

Fig. 12   Stress comparison between the SMP yield criterion and the 
M-C yield criterion for the axisymmetric circular ring expansion 
problem under plane strain condition
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The material parameters are set as C = 10MPa , Ec = 60GPa , 
Et = 60GPa,�c = 0.25,�t = 0.25,� = 40◦ . Pc = 6.3MPa , and 
Pu = 27.0MPa are determined according to Eqs. (36) and (40) 
which are derived based on the SMP yield criterion. According 
to Eq. (50), the critical internal pressure Pc and the ultimate 
internal pressure Pu under the M-C yield criterion are 7.7MPa 
and 28.1MPa , respectively. To ensure the circular ring can get 
into a plastic state under the two yield criteria. The internal pres-
sure was set on the inner wall of the circular ring, P = 28.5MPa . 
Here, the radial stress �r and the circumferential stress �

�
 deter-

mined by the SMP yield criterion and M-C yield criterion are 
compared.

Figure 12 shows the comparison of the distribution pat-
tern and the magnitude of �r and �

�
 along the radius deter-

mined by the SMP yield criterion and Mohr-Coulomb yield 
criterion. It is indicated that the magnitude of �r determined 
by Mohr-Coulomb yield criterion is slightly greater than that 
determined by the SMP yield criterion, but their distribu-
tion pattern is basically the same. However, the difference 
on �

�
 between the two yield criteria is significant. The main 

cause for this difference is that the effect of the intermediate 
principal stress �2 is considered in the SMP yield criterion. 
Therefore, it is recognized that the stress in the plastic zone 
will be significantly overestimated without considering the 
influence of the intermediate principal stress.

Conclusion

1.	 In this study, the generalized analytical solutions for the 
axisymmetric circular ring expansion problem under 
plane strain condition are proposed based on the SMP 
yield criterion and bi-modulus theory. Most importantly, 
the difference between the elastic parameters of materi-
als under tension and compression has been successfully 
considered in these solutions.

2.	 Compared with the Mohr-Coulomb yield criterion, 
the effect of the intermediate principal stress has been 
considered in the SMP yield criterion. As a result, the 
analytical solutions proposed in this study based on the 
SMP yield criterion could better describe the stress state 

(50)

⎧
⎪⎪⎨⎪⎪⎩

P
c
=

2C cos�

1+a−(1−a)sin�

P
u
= Ccot�

�
(1+a)(1+sin�)

1+a−(1−a)sin�

�
b

a

� 2 sin�

1+sin�
− 1

�

a =
�

E
t
(1−�

c
�
c
)

E
c
(1−�

c
�
t
)

(51)

⎧
⎪⎨⎪⎩

�r =
�
Pp + Ccot�

��
a

r

� 2sin�

1+sin�
− Ccot�

�
�
=

1−sin�

1+sin�

�
Pp + Ccot�

��
a

r

� 2sin�

1+sin�
− Ccot�

in the plastic zone of bi-modulus materials for the circu-
lar ring expansion problem.

3.	 The effects of the modulus ratio R, i.e., R = Et∕Ec = �t∕�c , 
on the stress, strain, and displacement, respectively, have 
been investigated by considering the bi-modulus character-
istic of materials. It is known, by the comparative analysis 
that the difference of elastic parameters under tension and 
compression, i.e.,Et,Ec , �t, �c , has a significant effect on the 
distribution pattern and magnitude of the stress σr, σ� , the 
strain εr, ε� , the displacement ur and the magnitude of criti-
cal internal pressure Pc , and the ultimate internal pressure 
Pu . Therefore, the classical analytical solution for the circu-
lar ring expansion problem without considering the differ-
ence of material parameters under tension and compression 
is defective, and the work presented in this study could make 
up for this defect, to some extent.
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