


Author's personal copy

Validation of a 2-D semi-coupled numerical model
for fluid–structure–seabed interaction

Jianhong Ye a,b,n, Dongsheng Jeng b,c, Ren Wang a, Changqi Zhu a

a State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences,
Wuhan 430071, China
b Division of Civil Engineering, University of Dundee, Dundee DD1 4HN, UK
c Griffith School of Engineering, Griffith University, Gold Coast, Queensland 4222, Australia

a r t i c l e i n f o

Article history:
Received 12 September 2011
Accepted 22 April 2013
Available online 7 August 2013

Keywords:
Coupled model
Fluid–structure–seabed interaction (FSSI)
Porous seabed
Ocean wave
Biot's theory
Navier–Stokes equations
Poro-elastic seabed
Poro-elastoplastic seabed
FSSI-CAS 2D

a b s t r a c t

A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-
Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for
wave motion in fluid domain, VARANS equations for porous flow in porous structures; and
taking the dynamic Biot's equations (known as "u − p" approximation) for soil as the
governing equations. The finite difference two-step projection method and the forward
time difference method are adopted to solve the RANS, VARANS equations; and the finite
element method is adopted to solve the "u − p" approximation. A data exchange port is
developed to couple the RANS, VARANS equations and the dynamic Biot's equations
together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments
conducted in wave flume or geotechnical centrifuge in which various waves involved are
used to validate the developed semi-coupled numerical model. The sandy bed involved in
these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction
between fluid, marine structures and poro-elastoplastic seabed foundation is a special point
and highlight in this paper, which is essentially different with other previous coupled
models The excellent agreement between the numerical results and the experiment data
indicates that the developed coupled model is highly reliablefor the FSSI problem.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last 20 years, an increasing number of marine structures, such as breakwaters, oil platforms, turbines, and
pipelines, have been constructed in offshore areas to protect the coastline from erosion or damage or to obtain energy from
the oceans. However, these marine structures built on seabed are vulnerable to liquefaction and shear failure of seabed
foundation due to the build-up of excess pore pressure or excessive shear stress under ocean wave loading. Therefore,
evaluation of the dynamic response of marine structures and their seabed foundation is particularly important for coastal
engineers involved in the design of marine structures. Inappropriate design and maintenance of marine structures and their
seabed foundation because of an incomplete understanding of the mechanism of fluid–structure–seabed interaction (FSSI)
could result in the collapse of marine structures. Some failures of marine structures due to liquefaction or shear failure of
seabed foundation have been reported (Chung et al., 2006; Franco, 1994; Lundgren et al., 1989; Silvester and Hsu, 1989; Zen
et al., 1985; Zhang and Ge, 1996).
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A number of studies have investigated fluid–structure–seabed interactions based on Stokes wave theory and poro-elastic
Biot theory (Biot, 1941, 1956). Analytical solutions were first proposed for the wave-induced dynamic response of seabed
under ocean wave loading (Madsen, 1978; Yamamoto et al., 1978). No marine structure on seabed was considered and linear
or nonlinear Stokes waves were used to apply force to seabed surface. Similar methods were adopted by Cha et al. (2002)
and Ulker et al. (2009b). Hsu and Jeng (1994) and Jeng and Hsu (1996) developed another analytical solution for the wave-
induced dynamic response of seabed under short-crested wave loading and considered the wave reflection in front of a
marine structure. However, the marine structure was simplified as a line without width or weight. Similar methods were
adopted by Tsai (1995) and Tsai et al. (2000). In some numerical models, the shape of marine structures built on a seabed
foundation was generally considered in a soil model (Jeng et al., 2001; Mase et al., 1994; Ulker et al., 2009a). However, the
effects of the weight of marine structures on the internal effective stress in seabed foundation and of marine structures on
the wave field were not considered appropriately. Analytical solutions for wave-induced pressure based on Stokes wave
theory and the Laplace's equation have been widely used to apply force to seabed surface. The wave-induced force acting on
marine structures is unknown and the dynamic response of marine structures under wave loading could not be calculated.
Therefore, these analytical solutions and numerical models cannot provide an understanding of FSSI mechanisms.

In the previous studies mentioned above, the seabed and marine structures such as rubble mound breakwaters were
treated as rigid and impermeable media in determining the effects of ocean waves. This means that there is no water
exchange between seawater and the pore water in the breakwater and seabed. This method is known as a decoupled
approach. In fact, the seawater, seabed and marine structures are an integrated interaction system. In this system, a wave
propagating on a porous seabed exerts dynamic pressure on the seabed and any marine structures built on it. This dynamic
pressure deforms the seabed and the structures and drives fluid exchange between the seawater and the pore water in the
seabed and structures. The deformed seabed and structures and the exchanged fluid driven by the dynamic pressure in turn
influence the wave characteristics. Some studies have considered the effect of porous seabed and a breakwater on the wave
characteristics. In general, two types of method are widely adopted.

In the first method, Reynolds-averaged Navier–Stokes (RANS) and volume-averaged Reynolds-averaged Navier–Stokes
(VARANS) equations are used to govern the wave field in the fluid domain and porous flow in the porous medium,
respectively. The seabed and/or marine structures are both treated as rigid porous structures in seawater (Huang et al.,
2003; Hur et al., 2008, 2010; Lara et al., 2006; Liu et al., 1999; Shao, 2010). In this type of coupling method, the pressure, the
flow field in the whole computational domain, and the flux at the interface between porous seabed/marine structure and
seawater are all continuous. However, variations in the wave-induced dynamic effective stresses in seabed foundation and
marine structures cannot be determined. In addition, this method is not applicable to elastoplastic seabed foundations.

The second method overcomes the problem whereby the effective stresses in porous seabed and marine structures
cannot be determined. The Biot's equation is adopted to determine soil displacements and effective stresses in porous
seabed and marine structure. The wave field in the fluid domain is governed by Laplace's equation and porous flow in the
seabed and marine structure is controlled by Darcy's law, which is introduced in the mass continuity equation in Biot theory.
The continuity conditions between Laplace equation and Biot's equation are that the pressure and velocity/flux are all
continuous at the interface between the seawater and the seabed/marine structure. The complex wave number k¼ kr þ iki is
introduced to consider wave damping during propagation on a porous seabed. Typical studies were carried out by Lee et al.
(2002) and Lee and Lan (2002). Since only the analytical method could be applied to solve the fully coupled Laplace and Biot
equations through the continuity of pressure and velocity/flux at the interface, marine structures could not be included in
the analysis because this would result in complex boundary conditions.

Mizutani et al. (1998) and Mostafa et al. (1999) developed a BEM–FEM combined numerical model to investigate the
wave–seabed–structure coupling interaction. In their model, Poisson's equation is used to govern the irrotational wave field
for an incompressible, nonviscous fluid, and the poro-elastic Biot's consolidation equation is used to govern the porous
seabed and structures. However, Poisson's equation cannot describe the complex motion of viscous seawater and pore
water, such as breaking waves. In addition, the poro-elastic Biot's consolidation equation is only applicable to cases involving
low-frequency loading and low soil permeability. Therefore, the combined BEM–FEM model is only applicable in limited
situations.

In this study, to gain a better understanding of the FSSI mechanism, we developed a semi-coupled numerical model
called PORO-WSSI 2D (also could be referred as FSSI-CAS 2D) in which RANS and VARANS equations are used to govern
wave motion and porous flow in the seabed and marine structures, respectively, and the dynamic In this paper, all 'Biot
equation' should be changed to 'Biot's equation' (known as the u−p approximation) is used to govern the mechanical
behavior of the porous seabed and marine structures. This semi-coupled model includes a data exchange interface to couple
the RANS, VARANS and dynamic Biot's equation. Pressure continuity and velocity/flux continuity are imposed on the
interface between the seabed/marine structures and seawater. In the coupling algorithm, the point radial interpolation
method is used to transmit and exchange data between the fluid domain and the solid domain. A non-matching mesh
system and non-matching time scheme for the fluid domain and solid domain in the whole computational domain are
also used.

Our semi-coupled model can simulate the complex motion of viscous fluid and can be applied to cases involving high
permeability and high-frequency loading. It can also determine wave-induced stress states in the seabed and marine
structures. In addition, the effects of fluid exchange between the seabed/marine structures and seawater on the
characteristics of wave propagating on the seabed can be considered in the wave model. Furthermore, unlike previous
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models, the porous seabed can be poro-elastoplastic. We validate our PORO-WSSI 2D or FSSI-CAS 2D model using an
analytical solution and some experimental data available from previous studies with or without a marine structure. The
excellent agreement between experimental data for wave profiles and pore pressure in the seabed marine structures and
the results predicted by PORO-WSSI 2D indicates that our semi-coupled model is feasible and reliable for FSSI problems.

2. Semi-coupled numerical model (PORO-WSSI 2D)

2.1. Wave model

The RANS equations are taken as the governing equations to determine the flow field and wave motion in the viscous
fluid domain outside the porous seabed and marine structures (Lin and Liu, 1998),

∂ufi

∂xi
¼ 0; ð1Þ

∂ufi

∂t
þ ufj

∂ufi
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¼−

1
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where ufi and ufj are the flow velocity of fluids (i; j¼ 1;2), pf is pressure, ρ is the fluid density, gi is gravity, and τij is the
viscous stress tensor for the mean flow. For a Newtonian fluid, τij ¼ μð∂ufi=∂xj þ ∂ufj=∂xiÞ, where μ is the molecular viscosity.
An overbar represents the ensemble average and a prime symbol denotes turbulent fluctuations with respect to the
ensemble mean.

We use the improved k−ϵ equations (Lin and Liu, 1998) to determine the turbulent kinetic energy k and the turbulent
dissipation rate ϵ:
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where νt is the eddy viscosity. In the k−ϵ equations, the influence of turbulence fluctuations on the mean flow field is
represented by the Reynolds stresses ρðu′fiu′fj Þ. The empirical coefficients C1ϵ, C2ϵ, sϵ and sk are set to 1.44, 1.92, 1.3 and 1.0,
respectively, as determined from stationary flows experiment (Rodi, 1980).

The flow field in a porous medium is determined by solving the VARANS equations (Hsu et al., 2002). These equations are
derived by integrating the RANS equations over a control volume. The mass and momentum conservation equations are
expressed as
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where n is porosity and d50 is the equivalent mean diameter of the porous material. cA denotes the added mass coefficient,
calculated as cA ¼ 0:34ðð1−nÞ=nÞ. α¼ 200 and β¼ 1:1 are empirical coefficients associated with linear and nonlinear drag
forces, respectively (Liu et al., 1999). Detailed information on determination of the empirical coefficients α and β has been
summarized by Lin and Karunarathna (2007). The influence of turbulence fluctuations on the mean flow, denoted as 〈u′fiu′fj〉,
is obtained by solving the k−ϵ turbulence model; “〈〉” stands for Darcy's volume-averaging operator and is defined as

〈a〉¼ 1
V

Z
Vf

a dv; ð7Þ

where V is the total average volume and Vf is the portion of V that is occupied by the fluid. “〈〉f ” is the intrinsic volume-
averaging operator, which is defined as

〈a〉f ¼ 1
Vf

Z
Vf

a dv: ð8Þ

The relationship between Darcy's volume-averaging operator and the intrinsic volume-averaging is:

〈a〉¼ n〈a〉f : ð9Þ
Note that the VARANS equations (5) and (6) can be degenerated into the RANS equations (1) and (2) if the porosity of the

porous medium is n¼1.0. This means that the pore is filled with just water and there is no solid matrix.
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In the VARANS equations, the interfacial forces between the fluid and the solid matrix have been modeled according to
the extended Forchheimer relationship, in which both linear and nonlinear drag forces between the pore water and the
skeleton of the porous structure are included in the last term of Eq. (6).

The volume-averaged k−ϵ equations for the volume-averaged turbulent kinetic energy k and its dissipation rate ϵ for
porous flow in porous structures, which are derived by taking the volume-average of the standard k−ϵ equations, are
expressed as (Hsu et al., 2002)
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where ϵ∞, k∞, and 〈νt〉 are defined as
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where Cμ is a coefficient depending on the local strain rate (Hsu et al., 2002). The definition and determination of other
parameters in (10) and (11) are the same as for (3) and (4).

In the wave model, we use the finite-difference two-step projection method on a staggered grid system for space
discretization, and the forward time-difference method for the time derivative. The VOF method is applied to track the free
surface of the water. The combined central difference method and upwind method are used to solve the k−ϵ equations. More
detailed information can be found in Lin (1998) and Hsu et al. (2002).

In this wave model, the internal wave maker proposed by Lin and Liu (1999) is applied to generate the target wave train,
in which a mass function is added to the continuity equation. By applying different mass functions, various waves can be
generated, such as linear waves, solitary waves, 2nd-order and 5th-order Stokes waves, and cnoidal waves. If the steepness
of the generated wave reaches a certain value, the wave will break when propagating on the seabed.

2.2. Soil model

2.2.1. Governing equations
Soil is a multi-phase material consisting of soil particles, water, and trapped air. In this mixture, the soil particles form the

skeleton and the water and air fill voids in the skeleton. Therefore, soil is a three-phase porous material rather than a
continuous medium. We use the dynamic Biot equation, known as the "u−p" approximation, proposed by Zienkiewicz et al.
(1980) to govern the dynamic response of the porous medium under wave loading. Displacements of the pore fluid relative
to soil particles are ignored, but the acceleration of the pore water and soil particles is included:
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where ðu; vÞ are soil displacements in the horizontal and vertical directions, respectively, n is soil porosity, s′x and s′z are
effective normal stresses in the horizontal and vertical directions, respectively, τxz is shear stress, p is the pore water
pressure, ρ¼ ρf nþ ρsð1−nÞ is the average density of the porous seabed, ρf is the fluid density, ρs is solid density, k is Darcy's
permeability, g is acceleration due to gravity, γω is the unit weight, and ev is volumetric strain. The compressibility of the
pore fluid (β) and the volume strain (ϵv) are defined as

β¼ 1
Kf

þ 1−Sr
pw0

� �
; and ϵv ¼

∂u
∂x

þ ∂v
∂z

; ð18Þ

where Sr is the degree of saturation of the seabed, pw0 is absolute static pressure, and Kf is the bulk modulus of the
pore water.
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2.2.2. Numerical method
We used the finite element method solve the governing equations (15)–(17). For dynamic problems, spatial discretization

and temporal discretization have to be performed for these governing equations.
Spatial discretization: Spatial discretization involves replacing the variables u and p by suitable shape functions in the

governing equations:

u¼∑Nu
i ui ¼Nuu; ð19Þ

p¼∑Np
i pi ¼Npp; ð20Þ

where u and p are the soil displacement vector and the pore pressure, u and p are the vectors for node displacement and
the pore pressure, and Nu and Np are the shape functions for displacement and the pore pressure, respectively. They are
expressed as follows:

u ¼ ½u1 v1 u2 v2 ⋯ un vn�T; ð21Þ

p ¼ ½p1 p2 ⋯ pn�T; ð22Þ
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n�: ð24Þ

Substituting (19) and (20) into (15) and (17) and applying the variation principle, the u−p governing equations can be
discretized in space as follows:

M €u þ Ku−Qp ¼ f ð1Þ; ð25Þ

G′ €u þ QT _u þ S _p þ Hp ¼ f ð2Þ; ð26Þ
where u and p are nodal displacement and pore pressure vectors, respectively. M, K, Q, G′, S, and H are the mass, stiffness,
coupling, dynamic seepage force, compressibility, and permeability matrixes, respectively. f ð1Þ and f ð2Þ are the node force
vectors. They are expressed as follows:
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f ð1Þ ¼
Z

ðNuÞTρg dΩþ
Z

ðNuÞTt dΓ; ð35Þ

f ð2Þ ¼ −
Z

ðNpÞT∇Tðkρf gÞ dΩþ
Z

ðNpÞTq dΓ; ð36Þ

where m¼ ½1;1;1;0;0;0�T, and t is the stress and q is the water flux acting on the surface of the computational domain.
The matrix G′ can be neglected in low-frequency analysis, as proposed by Chan (1988), such as under ocean wave loading.
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Under plane strain conditions, the elastic matrix D can be expressed as

D¼ E
ð1þ νÞð1−2νÞ

1−ν ν 0
ν 1−ν 0
0 0 1−2ν

2

2
64

3
75; ð37Þ

where E is the elastic modulus and ν is Poisson's ratio. In this soil model, both an elastic model and an elastoplastic model,
such as PZIII (Pastor et al., 1990), Cambridge clay, and Mohr column models, can be applied for computation. If an
elastoplastic constitutive model is used, the elastic matrix D should be replaced by the elastoplastic matrix Dep:

Dep
ijkl ¼De

ijkl−
De

ijmnmmnnstDe
stkl

HL=U þ nstDe
stklmkl

; ð38Þ

where De
ijkl is the tensor form of the elastic matrix D, HL=U is the plastic modulus during loading/unloading, mmn is the plastic

flow direction tensor, and nst is the loading or unloading direction tensor. The two direction tensors are formulated as
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� �

‖
∂f
∂sst ′

‖
; ð39Þ

where ∥∂g=∂s′mn∥ and ∥∂f =∂s′st∥ represent the norm of the tensors ∂g=∂s′ij and ∂f =∂s′ij, respectively. f is the yield surface
function and g is the plastic potential surface function in stress space. If the same function is used for both f and g, then an
associated flow rule should be applied, otherwise a non-associated flow rule should be applied.

Temporal discretization: The general procedure we used to solve governing equations (25) and (26) for each time step is
the generalized Newmark pth-order scheme for the jth-order equation (GNpj) time integration scheme. This method was
originally proposed by Newmark (1959) and later extended by Katona and Zienkiewicz (1985).

If (25) and (26) are satisfied at the nth time step, then they will also be satisfied at the ðnþ 1Þth time step (G' is
neglected):

Mnþ1
€u nþ1 þ Knþ1unþ1−Qnþ1pnþ1 ¼ f ð1Þnþ1; ð40Þ

QT
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_pnþ1 þ Hnþ1pnþ1 ¼ f ð2Þnþ1: ð41Þ

By applying the GN22 method to soil displacement, we can express the acceleration, velocity, and displacement at time
tn þ Δt as

€unþ1 ¼ €un þ Δ €u n; ð42Þ

_unþ1 ¼ _un þ €u nΔt þ β1Δ €unΔt; ð43Þ
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1
2
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1
2
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Applying the GN11 method for pore pressure, we can express the rate of change in pore pressure and the pore pressure
as

_pnþ1 ¼ _pn þ Δ _p n ð45Þ

pnþ1 ¼ pn þ _pnΔt þ θ1Δ _pnΔt: ð46Þ
In the above schemes, if the parameters β1, β2 and θ satisfy the conditions

β2≥β1≥
1
2

and θ1≥
1
2
; ð47Þ

then the GNpj time integration scheme is unconditionally stable (Chan, 1988). We set these parameters to β2 ¼ 0:605,
β1 ¼ 0:6, and θ1 ¼ 0:6. Chan (1988) showed that these values work well in evaluating the dynamic responses of soil under
earthquakes and ocean waves.

Substituting (42)–(46) into (40) and (41), we obtain the following matrix governing equation:

Mnþ1 þ 1
2 Knþ1β2Δt2 −Qnþ1θ1Δt

QT
nþ1β1Δt Snþ1 þ Hnþ1β1Δt

" #
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2
4

3
5; ð48Þ

where F ð1Þnþ1 and F ð2Þnþ1 are formulated as

F ð1Þnþ1 ¼ f ð1Þnþ1 þ Qnþ1pn þ Qnþ1
_pnΔt−Mnþ1

€un−Knþ1ðun þ _u nΔt þ
1
2
€unΔt2Þ; ð49Þ
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Fð2Þnþ1 ¼ f ð2Þnþ1−Snþ1
_pn−Hnþ1ðpn þ _pnΔtÞ−Qnþ1ð _un þ €unΔtÞ: ð50Þ

In Eq. (48), the unknowns are Δ €u n and Δ _pn. At the ðnþ 1Þth time step, they can be determined by solving Eq. (48) by taking
the values determined at the nth time step as the initial conditions. Here we use the Newton–Raphson method to solve (48).
Once the incremental acceleration Δ €un and the incremental rate of pore pressure change Δ _pn are determined, the soil
displacement and the pore pressure can be obtained by applying (44) and (46).

3. Coupling method

In coupling the RANS, VARANS and dynamic Biot's equation, there are two problems to be considered: time scheme and
mesh system.

3.1. Time scheme

In numerical coupling, two types of time scheme are generally used: matching and non-matching time schemes.
A matching time scheme requires that the time intervals for the fluid domain and the solid domain are the same. The time
interval for the fluid domain is generally set to a very small value, such as 0.005 s. The time interval for the solid domain can
be much greater than that for the fluid domain, such as 0.2 s. This difference in time interval for the fluid and solid domains
is significant.

3.2. Mesh system

There are also two types of mesh system, matching and non-matching, that can be adopted for numerical coupling.
A matching mesh system requires that the elements in the fluid domain and the elements in the solid domain have to share
the same nodes on the surface of the seabed and any marine structures. However, the element size in the fluid domain is
generally also very small relative to that in the solid domain. The ratio of element size in the solid domain to that in the fluid
domain could be 5–20.

If a matching time scheme and a matching mesh system are adopted in the computational domain, this will lead to huge
CPU computation and memory costs because of the small time interval and small element size in the fluid and solid
domains. However, this approach will not improve the computation accuracy. Therefore, we used a non-matching time
scheme and a non-matching mesh system to avoid these problems. In this approach, the time interval for the fluid and solid
domains can be set to different values, and the mesh systems in the fluid and solid domains are completely independent.

In the wave model, we use an automatic time step for computation. To guarantee numerical stability when solving the
governing equations in the wave model, which are essentially nonlinear transient advection–diffusion equations, the
following stability criteria for the time step are selected:

Δt≤
3
10

min
Δuf1

Δx
;
Δuf2

Δz

� �
ð51Þ

and

Δt≤
2
3
min

1
νþ νt

ðΔxÞ2ðΔzÞ2
ðΔxÞ2 þ ðΔzÞ2

" #( )
: ð52Þ

The first criterion arises from the stability requirement for the advection term, and the second criterion arises from the
diffusion term in the governing equation for the wave model. During computation, the wave model automatically chooses
the minimum time step based on these two criteria.

It has been reported that the FEM numerical soil model is unconditionally stable (Chan, 1988). During computation,
to capture detailed information on wave loading on the seabed and any marine structure we chose a time step of Δt ¼ T=N,
where T is the wave period. In general, N¼40–50.

Once the time step for the soil model is determined, a subroutine forces the wave model to output the wave field results
at the same time interval. There is clearly inconsistency between the automatic time step in the wave model and the set
time step in the soil model. Therefore, we used interpolation when outputting wave field information at the same time
interval as for the soil model. We show later in the paper that the algorithm for time step coupling between the wave and
soil models is valid, as evidenced by the good agreement between numerical results and experimental data.

In the wave model, if the mesh size is small, then the time step can be relatively large. However, the CPU computation
time is high for each time step. In general, the mesh size in the wave model can range from Δx¼ L=800 to Δx¼ L=200 (L is
the wave length), and Δz can be one-third to one-fifth of Δx. In the zone where the wave motion is complex or most
concentrated, a small element size can be used. In other zones, a large element size can be used.

In the soil model, to capture detailed information on wave loading on the seabed and any marine structure, the
horizontal element size can be Δx¼ L=40. In zones near to or under marine structures, the element size can be reasonably
smaller. The vertical element size can be one-third to twice the size of Δx.
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To couple the seawater and seabed together at the interface between the non-matching time scheme and the non-
matching mesh system, we developed a data exchange interface between the RANS, VARANS and dynamic Biot's equation.
We used the radius point interpolation (RPI) method (Wang et al., 2004) for data exchange between the wave and soil
models. We validated the RPI method using four functions: (1) sin ðxÞ, (2) cos ðxÞ, (3) a parabolic function, and (4) a power
function. Fig. 1 shows plots of the interpolation functions and the scatter interpolation points for the four functions. It is
evident that the RPI method is sufficiently accurate to exchange data between the fluid domain and the porous medium
domain, and the maximum relative error can be constrained to less than 0.6%.

3.3. Coupling process

In our semi-coupled model, the wave model is governed by RANS equations in the fluid domain and VARANS equations
in the porous medium (in this case the seabed). The soil model is governed by the dynamic Biot's equation. In the wave
model, pressure continuity and the fluid velocity and flux at the interface between seawater and the porous seabed

Fig. 1. Interpolation curves for the RPI method for sin ðxÞ, cos ðxÞ, a parabolic function, and a power function. ○, scatter interpolation points; –, interpolation
curves.

Fig. 2. Schematic diagram of the coupling procedure between the wave model and the soil model (Ye, 2012).
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or marine structures are considered. The flow field in the fluid domain and in the porous seabed/marine structure is
fully coupled. When coupling the RANS, VARANS and the dynamic Biot's equation, only the pressure continuity is applied in
calculations (Fig. 2). There is no feedback loop from the soil model to the wave model, which is why we call this numerical
model a semi-coupled model. In fact, other parameters, such as the fluid velocity and flux, have little effect on the dynamic
response of marine structures and their seabed foundation (Bierawski and Maeno, 2004).

In the coupling computation, the wave model is responsible for wave generation and propagation, porous flow in porous
structures, such as the seabed and rubble mound breakwaters, and determines the pressure acting on the seabed and any
marine structures. Since the RANS and VARANS equations are coupled at the interface between the fluid domain and the
porous structures through pressure and velocity/flux continuity, the pressure and the flow field are continuous in the whole
computational domain. The pressure/force acting on the seabed and marine structures determined by the wave model is
then input into the soil model through the data exchange interface developed to calculate the dynamic response of seabed

Fig. 3. Coupling process used in PORO-WSSI 2D (Ye, 2012).
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Fig. 4. (a) Wave profiles at x¼11.5 m for different mesh sizes in the fluid domain and (b) the relative errors in relation to the result for a mesh size of L/400.
L is the wave length (L¼2 m in this case), which is taken as the characteristic length for convergence analysis.
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and marine structures, including displacements, pore pressure, and effective stresses. The coupling process is illustrated in
Fig. 3.

3.4. Convergence analysis

Convergence analysis is indispensable for the developed coupled numerical models for FSSI problems. As stated above,
the soil model is unconditionally stable for any time step, as β2≥β1≥ 1

2 and θ1≥ 1
2, whereas the time step in the wave model is

automatically determined based on Eqs. (51) and (52) and mainly depends on the mesh size used in the fluid domain.
However, the stability and sensitivity of the coupled numerical model in relation to the mesh size used in the fluid and solid
domains are unknown. In FSSI problems, the wave length L is an important parameter. It can be taken as a reference for the
mesh sizes used in the fluid and solid domains. We use experiments performed by Lu (2005) as an example to investigate
the stability and sensitivity of our coupled numerical model to the mesh size used in the fluid and solid domains.

In the experiments conducted by Lu (2005), a regular nonlinear wave is generated by a wave maker in a wave flume. The
wave height is H¼12 cm, the wave period is T¼1.2 s, and the water depth is d¼40 cm. The experimental set-up is shown in
Fig. 11. The nonlinear wave generated passes through a sandy bed of 20 cm in thickness and 300 cm in length. We used our
semi-coupled numerical model to simulate the wave and the dynamics of the sandy bed under nonlinear wave loading for
different mesh sizes. For the wave model, mesh sizes of L/50, L/100, L/200, and L/400 in the fluid domain were chosen.
Smaller mesh sizes in the fluid domain are meaningless because sensitivity analysis revealed that the results converge for a
mesh size of L=400. Using the pressure acting on the sandy bed for a mesh size of L=400, we investigated the effects of mesh
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Fig. 5. Wave-induced pressure acting on the sandy bed at x¼11.5 m, z¼0.2 m for different mesh sizes in the fluid domain.
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Fig. 6. Pore pressure variation at x¼11.5 m, z¼0.1 m under wave loading for different mesh sizes in the solid domain. L is the wave length (L¼2 m in this
case), which is taken as the characteristic length for convergence analysis.
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size on the soil model results and data exchange between the fluid and solid domains. The mesh sizes chosen were L=10,
L=20, L=30, L=40, L=50, L=70, and L=100. The ratio of the wave height H to water depth d is 12/40¼0.3, so a fifth-order
numerical wave maker was used to generate the target wave train in the wave model. In the numerical simulation, the wave
maker is located at x¼0.0 m and the left and right ends of the rectangular sandy bed are located at x¼10 m and x¼13 m,
respectively. The time step in the soil model is chosen as T=N¼ 1:2=40¼ 0:03 s.

Fig. 4a shows wave profiles at x¼11.5 m for different mesh sizes in the fluid domain. It is clear that the wave profiles are
not convergent for mesh sizes of L=50 and L=100; and the results when mesh size¼L=200 basically is convergent. Fig. 4b
shows the relative error for the wave profiles at x¼11.5 m in relation to the result for a mesh size of
L/400. The results for mesh sizes of L=50 and L=100 are not convergent, while the relative error for a mesh size of L=200
is generally less than 2%. These results indicate that the mesh size in the fluid domain must be less than L=200, otherwise
the computational results do not converge. Fig. 5 shows the wave-induced pressure acting on the sandy bed at x¼11.5 m,
z¼0.2 m for different mesh sizes in the fluid domain. The same conclusion can be drawn as for Fig. 4.

Fig. 6 shows the variations of the pore pressure at x¼11.5 m, z¼0.1 m under wave loading for different mesh sizes in the
solid domain. It is evident that the results differ for solid mesh sizes of L=10, L=20, and L=30 when compared to those for
L=100. The difference is minor for L=50. The differences are more clearly illustrated in Fig. 7, from which it is clear that the
results for L=10, L=20, and L=30 are not convergent and are unstable. The relative error is as great as 730%. For a solid mesh
size of less than or equal to L=40, the computational results converge. Fig. 8 shows the vertical distribution of the wave-
induced maximum dynamic pore pressure at x¼11.5 m in the sandy bed for different solid mesh sizes. These results
demonstrate that the solid mesh size must be less than or equal to L=40 for convergent results.

As stated above, the mesh size ratio between the fluid and solid domains can be 5–20. On the one hand, the greater the
ratio, the clearer the information of the wave-induced dynamic pressure for the interpolation and data exchange at the
interface. On the other hand, if the ratio is extremely large, for example, the fluid mesh size is L=400 and the solid mesh size
is L=5 (i.e., only five elements under one wave length), the resulting information for wave loading on the seabed would not
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Fig. 7. Relative error for the wave-induced pore pressure at x¼11.5 m, z¼0.1 m in relation to the results for a solid mesh size of L/100.
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Fig. 8. Vertical distribution of the wave-induced maximum dynamic pore pressure on the line at x¼11.5 m in the sandy bed for different solid mesh sizes.
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be comprehensive. Wave loading on nodes at interfaces would become broken lines rather than smooth curves. Such a large
ratio would definitely affect the data exchange process and the computational results. Fig. 9 illustrates the effect of the solid
mesh size on data exchange between the fluid and solid domains. The data show that the interpolation process is
significantly unstable for solid mesh sizes of L=10 and L=20, but it is stable when the solid mesh size is less than or equal to
L=40. This confirms that the solid mesh size should be less than or equal to L=40.

4. Veri� cation for a poro-elastic sandy bed

It is necessary to show that our PORO-WSSI 2D model can accurately predict the dynamic response of marine structures
and the seabed under wave loading. In this section, we use an analytical solution and experimental data from previous
studies with or without a structure to verify our semi-coupled model.

4.1. Analytical solution (Hsu and Jeng, 1994)

Hsu and Jeng (1994) proposed an analytical solution for the dynamic response of a finite and isotropic elastic seabed
under short-crested wave loading. We use this analytical solution to validate our numerical soil model. The wave
characteristics used are as follows: wave period, T¼8 s; water depth, d¼20 m; and wave height, H¼2.0 m. According to
the linear wave diffusion relation, the wave length is L¼88.8 m. To apply the periodic boundary condition to the two lateral
sides of the computational domain, the length of the seabed is chosen as 88.8 m and its thickness is set to 30 m for the
verification cases.

Fig. 10 shows the numerical results determined by PORO-WSSI 2D for the maximum wave-induced pore pressure and
effective stress in fully or partially saturated coarse or fine sand. Results for the analytical solution (Hsu and Jeng, 1994) are
also plotted. It is evident that the numerical model results are in good overall agreement with the analytical solution. This
indicates that the FEM numerical soil model is reliable.

4.2. Cnoidal wave experiment

Lu (2005) conducted a series of experiments on the dynamic response of a sandy bed to waves propagating on it in a
wave flume (60 m long, 1.5 mwide, and 1.8 m high). Waves generated in the flume include regular waves and cnoidal waves.
The wave period ranges from 1.0 to 1.8 s. The wave height varies from 8 to 16 cm. The bed consists of coarse or fine sand.
The experimental set-up is shown in Fig. 11. The pore pressure at the four points on the midline of the sandy bed are
monitored during experiments.

We predicted the dynamic response of coarse sand under cnoidal wave loading using our semi-coupled model.
The predicted results are compared to experimental data for the dynamic pore pressure at the four points to show the
accuracy and reliability of our integrated model. The properties of coarse sand and the wave characteristics in the tests
described by Lu (2005) are listed in Table 1.
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Fig. 9. Effect of solid mesh size on data exchange between the fluid and solid domain at the position x¼11.5 m, z¼0.2 m.

J. Ye et al. / Journal of Fluids and Structures 42 (2013) 333–357344


