3D liquefaction criteria for seabed considering the cohesion and friction of soil
Jianhong Ye, a, b, *

a Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
b Division of Civil Engineering, University of Dundee, Dundee DD1 4HN, UK

ARTICLE INFO

Article history:
Received 28 September 2011
Received in revised form 15 April 2012
Accepted 20 April 2012

Keywords:
Liquefaction criteria
Wave loading
Earthquake loading
Cohesion
Friction angle
Porous seabed
Biot’s theory

ABSTRACT

In this study, according to the Mohr–Coulomb friction principle, two 3D liquefaction criteria are proposed based on the effective stresses state and the dynamic pore pressure, in which the cohesion and internal friction angle of soil (sand or silt) are both considered. Through the comparison investigation about the liquefaction in soil under wave–current loading, it is found that the cohesion and internal friction angle of soil have significant effect on the prediction of liquefaction zone under dynamic loading, such as wave and earthquake. The new liquefaction criteria proposed in this study can be degenerated to the form proposed by Okusa [16], Tsai [20] and Zen and Yamazaki [26]. It cannot be degenerated to the form proposed by Jeng [9]. It is indicated that there is no clear physical basis for the liquefaction criteria proposed by Jeng [9]. The area and maximum liquefaction depth of liquefaction zone in seabed would be overestimated greatly by the criteria proposed by Jeng [9].

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In practice engineering, the liquefaction of soil, especially the non-cohesive sandy soil, under dynamic loading, such as the ocean wave and earthquake, is a widely observed phenomenon. Due to the fact that the liquefied soil behaves like a kind of liquid, there is no any bearing capacity to support the structures built on it. The liquefaction of soil foundation under wave loading and/or earthquake loading potentially is a very dangerous factor for the stability of structures, such as oil platforms, turbines and breakwaters. Some liquefaction induced failure cases of marine structures under wave loading have been reported in previous literature [4,5,14,18,25,27]. The failure of structures due to the earthquake induced liquefaction can be found in Ref. [19]. Therefore, the evaluation of potential liquefaction of soil under dynamic loading is apparently necessary in structures design.

In coastal engineering, there are two types of liquefaction mechanism for the seabed liquefaction: transient liquefaction and residual liquefaction. The transient liquefaction of seabed foundation is mainly related to the phase lag between the dynamic pore pressure in seabed and the dynamic pressure induced by the wave propagating on seabed. The transient liquefaction zones in seabed would appear and disappear periodically in the zone under wave trough. The residual liquefaction is mainly due to the build-up of pore pressure in soil under wave or earthquake loading. Accompanying with the build-up of pore pressure in soil, the contact effective stresses decrease between soil particles. When the contact effective stresses become zero, the soil becomes liquefied. The liquefaction criteria is to state the initial trigger condition of liquefied status of soil, which is very important in evaluation of the liquefaction potential of soil foundation under dynamic loading.

At present, some literatures are available in which some methods are proposed to assess the liquefaction susceptibility of soil under earthquake loading by adopting the parameters of soil property, such as clay content, liquid limit, plasticity index, water content, confining stress [1,2,15,17,21]. However, these methods are all based on engineering experiences; and the high liquefaction susceptibility of soil predicted by these proposed methods does not mean that the soil must be liquefied under earthquake loading. The liquefaction is only a possibility. The experience-based methods for liquefaction susceptibility cannot be used in computation. The quantitative liquefaction criteria is needed in computation to judge whether the soil is liquefied or not. Several works on the quantitative liquefaction criteria are available so far.

Okusa [16] firstly proposed a 1D liquefaction criteria based on the vertical effective stress:

\[(γ_s - γ_w)z = \sigma_{zd} \leq \sigma_{zd}' \]

(1)

in which the \(γ_s \) and \(γ_w \) are the unit weight of soil and water, \(z \) is the depth of soil, \(\sigma_{zd} \) is the initial vertical effective stress in seabed, \(\sigma_{zd}' \) is the dynamic vertical effective stress induced by the dynamic
loading. This liquefaction criteria means that if the upward dynamic vertical effective stress is greater than the initial downward effective stress, the soil will liquefy. This criteria has clear physical basis. But the effect of horizontal effective stresses \(\sigma_x' \) and \(\sigma_y' \) are not taken into consideration. Under the same frame Tsai [20] extended the above 1D liquefaction criteria to 3D condition by adopting the average of the effective stresses:

\[
-(\gamma_s - \gamma_w) \left(1 + \frac{2K_0}{3}\right) z \leq \frac{1}{3}(\sigma_{zd} + \sigma_{yd} + \sigma_{zd})
\]

(2)

\(K_0 \) is the lateral compression coefficient of soil. This liquefaction criteria only adopts the average idea. There is no clear physical meaning of how the horizontal effective stresses \(\sigma_x' \) and \(\sigma_y' \) affect the liquefaction potential of soil.

Zen and Yamazaki [26] developed another liquefaction criteria based on the dynamic pore pressure:

\[
-(\gamma_s - \gamma_w) z = \sigma_{zd} \leq p - p_b
\]

(3)

in which \(p \) and \(p_b \) are the dynamic pore pressure in seabed, and the pressure acting on seabed. This liquefaction criteria means that the seabed will liquefy if the upward seepage force can overcome the weight of overburdened soil and/or structures. Similar with the liquefaction criteria proposed by Okusa [16], the physical meaning of this criteria is clear. However, the horizontal effective stresses \(\sigma_x' \) and \(\sigma_y' \) are also not taken into consideration. Jeng [9] further extended the above liquefaction criteria into 3D situation:

\[
-(\gamma_s - \gamma_w) \left(1 + \frac{2K_0}{3}\right) z \leq p - p_b
\]

(4)

Similarly, the average idea is used. The physical meaning of how the initial horizontal effective stresses \(\sigma_{zd} \) and \(\sigma_{yd} \) affect the liquefaction potential of soil is not clear.

The above-mentioned four liquefaction criteria all do not take the cohesion and internal friction angle of soil into consideration. From the view of physical phenomenon, the clay with cohesion is more difficult to liquefy than the sand without cohesion; and the dense sand with large internal friction angle is more difficult to liquefy than that of loose sand. Therefore, the effect of cohesion and friction angle on the liquefaction potential of soil is significant and cannot be neglected.

In this study, according to the principle of Mohr–Coulomb friction, two liquefaction criteria based on the effective stresses and pore pressure are proposed, in which the cohesion and internal friction angle of soil (sand or silt) are both considered. The comparison study about the liquefaction in soil under wave-current loading is conducted to illustrate the effect of cohesion and internal friction angle on the liquefied zone in seabed foundation. Some suggestions are also included to demonstrate which liquefaction criteria should be used for various engineering conditions. For the sake of simplicity, the liquefaction criteria proposed by Okusa [16], Zen and Yamazaki [26], Tsai [20] and Jeng [9] are labeled as A, B, C and D respectively. The liquefaction criteria proposed in this study considering the cohesion and internal friction angle based on the effective stresses and pore pressure are labeled as E and F, respectively in the following section.

2. Formulation of new 3D liquefaction criteria

2.1. Criteria based on effective stresses

It is assumed that there is a micro soil volume \((dx \times dy \times dz)\) shown in Fig. 1. At a moment, the effective stress \(\sigma_x', \sigma_y', \sigma_z', \tau_{xz}, \tau_{yz}, \tau_{xy} \) are acting on the outer surface of the micro soil volume. In this study, the compressive stress is defined as the positive value in analysis, which is widely adopted in soil/rock mechanics.

According to the Mohr–Coulomb criteria, the horizontal effective stress \(\sigma_x', \sigma_y' \) will provide the friction potential on the four vertical lateral sides to prevent the soil volume from moving upward if the \(\sigma_x', \sigma_y' \) are compressive. The friction potential provided by the compressive \(\sigma_x', \sigma_y' \) on the lateral sides can be expressed as

\[
\begin{align*}
2(c + \sigma_x' \tan \phi)u(\sigma_x')dydz & \quad \text{induced by } \sigma_x' \\
2(c + \sigma_y' \tan \phi)u(\sigma_y')dxdz & \quad \text{induced by } \sigma_y'
\end{align*}
\]

(5)

where the \(c \) and \(\phi \) are the cohesion and internal fraction angle. \(u(x) \) is the unit step function

\[
u(x) = \begin{cases}
1 & x > 0 \\
0 & x \leq 0
\end{cases}
\]

(6)

The usage of the unit step function \(u(x) \) in Eq. (5) is to describe that there is no friction potential if the horizontal effective stress \(\sigma_x', \sigma_y' \) is tensile \((< 0)\).

The vertical effective stress \(\sigma_z' \) has two components: the initial vertical effective stress \(\sigma_{zd} \) when there is no dynamic loading, and the dynamic loading induced vertical effective stress \(\sigma_{zd}' \). The dynamic loading can be ocean wave or earthquake. The vertical effective stress \(\sigma_z' \) should be the sum of initial vertical effective stress \(\sigma_{zd} \) and the dynamic vertical effective stress \(\sigma_{zd}' \)

\[
\sigma_z' = \sigma_{zd} + \sigma_{zd}'
\]

(7)

Generally, the initial vertical effective stress \(\sigma_{zd} \) in soil is induced by the self-gravity of soil \(\sigma_0 \) and the gravity of structures built on the soil. Therefore, \(\sigma_{zd} \) is absolutely the resistance for the soil liquefaction. The only probable driven force to make the soil move upward to liquefy is the dynamic vertical effective stress \(\sigma_{zd}' \). At one moment, the dynamic vertical effective stress \(\sigma_{zd}' \) in soil is compressive, for example, the soil under wave crest, \(\sigma_{zd}' \) prevents the liquefaction of soil. However, at another moment, the dynamic vertical effective stress \(\sigma_{zd}' \) could be tensile, for example, the soil under wave trough, \(\sigma_{zd}' \) will make the soil has the potential to move upward to liquefy. When the tensile \(\sigma_{zd}' \) is huge enough to overcome the resistance provided by \(\sigma_x', \sigma_y' \) and \(\sigma_{zd} \), the soil will liquefy. Therefore, the liquefaction criteria proposed can be expressed as

\[
\begin{align*}
-\sigma_{zd}'dxdydz & \geq \sigma_{zd} + 2(c + \sigma_x' \tan \phi)u(\sigma_x')dydz \\
& \quad + 2(c + \sigma_y' \tan \phi)u(\sigma_y')dxdz
\end{align*}
\]

(8)
soil, dynamic

Substituting Eq. (7) into Eq. (9), and considering the $dx = dy = dz$
for the micro soil volume; the liquefaction criteria can be rewritten as:

$$\sigma'_x + 2(c + \sigma'_y \tan \phi)u(\sigma'_y) \frac{dz}{dx} + 2(c + \sigma'_y \tan \phi)u(\sigma'_y) \frac{dz}{dy} \leq 0$$ \hspace{1cm} (10)

The above proposed 3D liquefaction criteria includes the effect
of cohesion and internal friction angle of soil on the liquefaction. It
can be degenerated to the criteria proposed by Okusa [16] and Tsai
[20]. If the effect of horizontal effective stress σ'_x, σ'_y on the
liquefaction is not considered, and the cohesion is set as $c = 0$ for sandy
soil, Eq. (10) can be degenerated to 1D stress criteria proposed by
Okusa [16]. If the cohesion is $c = 0$, and the friction angle is $\phi = 26.6^\circ$,
Eq. (10) can be degenerated to 3D stress criteria proposed by Tsai
[20]. It is indicated that the liquefaction criteria proposed by Tsai
[20] assume the cohesion $c = 0$, and the friction angle of ϕ of soil is
26.6°. Clearly, this assumption is inappropriate due to the fact that
the friction angle ϕ of sandy soil generally is 30–45°; and the cohesion
of clay soil is not 0. The clay soil with significant cohesion is
difficult to liquefy than that of sandy soil. From this view, the
effect of cohesion on the liquefaction cannot be ignored.

Comparing the liquefaction criteria based on the effective
stresses proposed by Okusa [16] (criteria A), Tsai [20] (criteria C)
and Eq. (10) (criteria E) developed in this study, it generally can
be inferred that the maximum liquefaction depth predicted by
the above three liquefaction criteria has following relationship:
$d_{A} \geq d_{C} \geq d_{E}$, due to the fact that the lateral frictional resistance
provided by σ'_x, σ'_y is not included in the liquefaction criteria
proposed by Okusa [16]; meanwhile, the lateral frictional resistance
is partially considered assuming the friction angle $\phi = 26.6^\circ$ in
the liquefaction criteria proposed by Tsai [20]. $d_{C} \geq d_{E}$ attributes to the
friction angle of soil is generally 30–45°, greater than the assumption of $\phi = 26.6^\circ$.

2.2. Criteria based on dynamic pore pressure

As illustrated in Fig. 2, a macro 3D soil volume $(\Delta x \times \Delta y \times z)$
is chosen as the research object. The wave/earthquake induced
dynamic pressure at the top and bottom of soil volume is p_b and p.
Similar with the liquefaction criteria based on the stresses proposed
in above section, the friction potential provided by the initial
effective stress σ'_x, σ'_y to prevent the soil volume moving upward
can be expressed as

$$\int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} j_z dx dy dz \geq \int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} \sigma'_x dx dy$$ \hspace{1cm} (11)

$$2(c + \sigma'_y \tan \phi)u(\sigma'_y) dy dz$$ \hspace{1cm} (11)

$$2(c + \sigma'_x \tan \phi)u(\sigma'_x) dx dz$$ \hspace{1cm} (11)

Before the dynamic force is applied to the soil volume, the initial
vertical effective stress σ'_x induced by the self-gravity of soil and/or
gravity of structures built on seabed is also the resistance for the
soil liquefaction. The resistance can be expressed as $\sigma'_x dx dy dz$

After the dynamic force is applied to the soil volume, the vertical
seepage force j_z in the soil volume is the only probable driven force
making the soil volume move upward to liquefy. When the vertical
seepage force is upward, and huge enough to overcome the initial
resistance, the soil volume will move upward, and liquefy (the
surface of seabed is set as $z = 0$):

$$\int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} \sigma'_x dx dy \geq \int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} \sigma'_y dx dy$$ \hspace{1cm} (11)

$$2(c + \sigma'_x \tan \phi)u(\sigma'_x) dy dx$$ \hspace{1cm} (11)

$$2(c + \sigma'_y \tan \phi)u(\sigma'_y) dx dy$$ \hspace{1cm} (11)

$$\int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} j_z dx dy dz \geq \int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} \sigma'_y dx dy$$ \hspace{1cm} (11)

$$2(c + \sigma'_x \tan \phi)u(\sigma'_x) dy dz$$ \hspace{1cm} (11)

$$2(c + \sigma'_y \tan \phi)u(\sigma'_y) dx dz$$ \hspace{1cm} (11)

where the seepage force j_z are defined as the gradient of dynamic
pressure at the position of the soil volume:

$$j_z = -\frac{\partial p}{\partial z}$$ \hspace{1cm} (13)
in which p_b is the dynamic pore pressure. The minus sign ‘−’ means
that the upward seepage force is taken as positive value.

If the Δx and Δy is sufficiently small, the j_z, σ'_x, σ'_y and σ'_y
could be considered to be uniform on area $\Delta x \times \Delta y$. Performing
the integration for Eq. (12), obtaining

$$\int_{x=0}^{x=\Delta x} \int_{y=0}^{y=\Delta y} (p - p_b) \Delta x \Delta y \geq \sigma'_x \Delta x \Delta y + \Delta y \int_{x=0}^{x=\Delta x} 2(c + \sigma'_y \tan \phi)u(\sigma'_y) dx$$

$$+ \Delta x \int_{y=0}^{y=\Delta y} 2(c + \sigma'_x \tan \phi)u(\sigma'_x) dy$$ \hspace{1cm} (14)

where the p_b and p are the dynamic pore pressure on seabed and
in seabed at the depth $-z$. For the seabed without marine structures
built on it. The horizontal effective stress σ'_x, σ'_y in the consolidation
status could be approximately expressed as

$$\sigma'_x = \sigma'_y = K_0 \sigma'_0 = K_0 [(\gamma_s - \gamma_w)z]$$ \hspace{1cm} (15)
in which the K_0 is the lateral pressure coefficient of soil. Substituting
the expression of σ'_x, σ'_y in Eq. (15) into Eq. (14), we get:

$$\frac{(p - p_b) \Delta x \Delta y \geq \sigma'_x \Delta x \Delta y + \Delta y \left\{ \frac{1}{2} (\gamma_s - \gamma_w) \xi^2 \tan \phi - cz \right\} u(\sigma'_x)$$

$$+ 2 \Delta x \left\{ \frac{1}{2} (\gamma_s - \gamma_w) \xi^2 \tan \phi - cz \right\} u(\sigma'_y)$$ \hspace{1cm} (16)

for sandy soil, cohesion $c = 0$, the above liquefaction criteria becomes

$$(p - p_b) \geq \sigma'_x + \frac{\xi^2}{\Delta x} [(\gamma_s - \gamma_w) \tan \phi] u(\sigma'_x)$$

$$+ \frac{\xi^2}{\Delta x} [(\gamma_s - \gamma_w) \tan \phi] u(\sigma'_y)$$ \hspace{1cm} (17)

If the effect of σ'_x and σ'_y on the liquefaction potential is not
considered, the liquefaction criteria Eq. (17) can be degenerated to
the 1D liquefaction criteria based on the dynamic pore pressure
proposed by Zen and Yamazaki [26] (criteria B). The liquefaction
criteria proposed by Jeng [9] (criteria D) just make an average of
the initial effective stresses to consider the effect of σ'_x and σ'_y
on the liquefaction resistance. There is no clear physical basis to
demonstrate how the σ'_x and σ'_y affect the liquefaction potential
of soil. In criteria E proposed in this study, the effect of σ'_x and σ'_y
on the liquefaction potential is taken into consideration by estimating
the lateral friction induced by σ'_x and σ'_y through the Mohr–Coulomb law. From the view of physics, the criteria E is
much more reasonable than the criteria D. From Eq. (17), it can be
known that the resistance to liquefaction induced by σ'_x and σ'_y
is positively related to the depth z. Criteria E proposed here cannot be
degenerated to the criteria D proposed by Jeng [9].

Unfortunately, the most difficult problem suffered in application of
criteria E is how to determine the size of Δx and Δy. From Eq.
we know that the large \(\Delta x \) and \(\Delta y \) would make the effect of \(\sigma_{x0}' \) and \(\sigma_{y0}' \) decrease, and small \(\Delta x \) and \(\Delta y \) would make the effect of \(\sigma_{x0}' \) and \(\sigma_{y0}' \) significantly increase. Therefore, to authors' knowledge, the liquefaction criteria \(E \) (Eq. (17)) actually is not applicable to directly judge the liquefaction of soil due to the existence of \(\Delta x \) and \(\Delta y \). However, the liquefaction criteria \(E \) proposed in this study at least indicates that criteria \(D \) [9] adopting the mean initial effective stresses is not reasonable from the view of physics.

Comparing the criteria \(B, D \) and \(E \), it is found that the maximum liquefaction depth in seabed under wave loading predicted by criteria \(B, D \) and \(E \), respectively has following sequence: \(d_e \leq d_B \leq d_D \). \(d_B \leq d_D \) is because the mean value of initial effective stresses generally is less than the initial vertical effective stress \(\sigma_{x0}' \) at a certain depth. \(d_e \leq d_B \) attributes to that the lateral friction induced by \(\sigma_{x0}' \) and \(\sigma_{y0}' \) could effectively prevent the liquefaction advancing downward. From the view of physics, the liquefaction depth determined by criteria \(E \) proposed in this study is most reliable. However, this liquefaction depth cannot be quantitatively determined. The liquefaction depth predicted by the criteria \(D \) [9] would significantly overestimated. Therefore, the 1D liquefaction criteria \(B \) proposed by Zen and Yamazaki [26] may be the best choice in engineering. On the one side, criteria \(B \) is easy to use. On the other hand, the predicted liquefaction depth is relatively conservative for engineering design.

For the seabed with marine structures, due to that the initial effective stresses in seabed foundation will be significantly affected by the weight of marine structures, the initial effective stress \(\sigma_{x0}' \), \(\sigma_{y0}' \) and \(\sigma_{z0}' \) cannot be described by Eq. (15), Eq. (14) only can be simplified as:

\[
(p - p_b) \geq \sigma_{z0}' + \frac{1}{\Delta z} \int_z^0 2(c + \sigma_{x0}' \tan \phi)u(\sigma_{x0}')dz + \frac{1}{\Delta y} \int_y^0 2(c + \sigma_{y0}' \tan \phi)u(\sigma_{y0}')dz
\]

(18)

It is the same like that situation without marine structure built on seabed, the maximum liquefaction depth predicted by criteria \(B, D \) and Eq. (18) is: \(d_e \leq d_B \leq d_D \). The reason is the same with that without marine structure built on seabed. Therefore, it is also recommended that the 1D criteria proposed by Zen and Yamazaki [26] could be used in engineering design.

The liquefaction in seabed floor can be induced by earthquake or ocean wave loading. If the above proposed 3D liquefaction criteria is adopted to access the wave induced liquefaction in a seabed floor, generally, the seabed floor and ocean wave in the offshore environments, where the water depth normally is not deeper than 50 m, are defaulted as the investigation objects. In the deep ocean, the wave effect on the seabed floor is minor. There is no need to study the seabed response under wave loading. In the real offshore environments, the seabed generally consists of sandy soil or silty soil. The new proposed 3D liquefaction criteria are applicable both for the sandy soil and silty soil. The different between the sandy soil and silty soil in the proposed liquefaction criteria is that: the cohesion is zero for sandy soil, while, it is not zero for silty soil.

3. Comparisons: the wave–current induced seabed liquefaction

Due to the fact that the ocean wave and current generally co-exist in the offshore environment, in this section, the liquefaction of seabed under wave and uniform current loading is taken as an example to demonstrate the differences of shape, area and depth of liquefaction zone predicted by the liquefaction criteria \(A, B, C, D \) and \(E \).

Hsu et al. [6] proposed a third-order analytical solution for the wave and uniform current interaction by adopting the perturbation theory. The solution of free surface \(\eta \) are expressed as:

\[
\eta = \frac{1}{2} H \cos(\lambda x - \omega t)
\]

\[
\frac{1}{16} \lambda^2 \left[\frac{3 + 2 \sinh^2(\lambda d) \cosh(\lambda d)}{\sinh(\lambda d)} \right] \cos(2(\lambda x - \omega t))
\]

\[
\frac{1}{8} \lambda^2 \left[\frac{1}{2} H \left(\frac{1}{2} \right)^2 \left(\frac{3 + 14 \sinh^2(\lambda d) + 2 \sinh^4(\lambda d)}{\sinh^4(\lambda d)} \right) \cos(\lambda x - \omega t) \right]
\]

\[
\frac{1}{64} \lambda^2 \left[\frac{1}{2} H \left(\frac{27 + 72 \sinh^2(\lambda d) + 72 \sinh^4(\lambda d) + 24 \sinh^6(\lambda d)}{\sinh^6(\lambda d)} \right) \cos(3(\lambda x - \omega t)) \right]
\]

where the \(H \) is the wave height of first-order wave, \(\lambda \) is the wave number, \(d \) is the water depth, \(U_0 \) is the current velocity, \(g \) is the gravity.

The nonlinear dispersion relation is:

\[
\omega = \omega_1 + \frac{1}{64} \lambda^2 H^2 \left(\omega_1 - U_0 \lambda \right) \frac{9 + 8 \sinh^2(\lambda d) + 8 \sinh^4(\lambda d)}{\sinh^4(\lambda d)}
\]

\[
\omega_1 = U_0 \lambda + \sqrt{gk \tanh(\lambda d)}
\]
The dynamic pressure acting on the seabed is:

\[
P_0(x,t) = \frac{\rho_f H}{2 \cosh^2 \Lambda d} \left[1 - \frac{a_2^2 \lambda^2 H^2}{2(\lambda k - a_0)} \cos(\lambda \cdot x - \alpha t) \right] + \frac{3 \rho_f H^2}{8} \frac{\alpha_2(a_0 - \lambda k)}{2 \sinh^2(\lambda d)} \frac{g_0}{\sinh 2\Lambda d} \cos 2(\lambda \cdot x - \alpha t) + \frac{3 \rho_f \lambda^2 \alpha_2(a_0 - \lambda k)}{512} \frac{g_0}{\sinh^3(\lambda d)} \cos 3(\lambda \cdot x - \alpha t)
\]

(22)

where \(\rho_f \) is the density of sea water. This wave-uniform current induced pressure acting on seabed \(p_0 \) is the boundary condition for the dynamic response of seabed soil.

The dynamic response of seabed under wave and uniform current loading has been investigated by Ye and Jeng [24] adopting the integrated numerical model PORO-WSSI II, which is developed by Ye [22] and Jeng et al. [10] for the problem of wave–seabed–marine structures interaction. In the integrated model PORO-WSSI II, the FEM soil model DIANA SWANDYNE II developed by Chan [3], which originally was for the dynamic response of soil under seismic loading, rather than the wave loading, and the wave model COBRAS developed by Liu’s group in Conell University [8,12,13] are coupled together. This integrated model has been verified and validated extensively using experimental tests data in Ref. [22]. More detailed information can be referred to Ye [22], Ye and Jeng [24] and Ye and Jeng [23]. Here, the integrated model PORO-WSSI II also adopted to determine the stress status of seabed, and further predict the liquefaction zone in seabed by using different criteria.

The governing equation used in integrated model PORO-WSSI II for the porous seabed (plain strain) is the Biot’s dynamic equation known as “\(u - p \)” approximation proposed by Zienkiewicz et al. [28]:

\[
\frac{\partial u_s}{\partial x} + \frac{\partial v_s}{\partial y} = -\frac{\partial p}{\partial x} + \rho_0 \frac{\partial^2 u_s}{\partial t^2},
\]

(23)

\[
\frac{\partial v_s}{\partial x} + \frac{\partial u_s}{\partial y} = -\frac{\partial p}{\partial y} + \rho_0 \frac{\partial^2 v_s}{\partial t^2},
\]

(24)

\[
k\nu^2 v_s - \gamma_n \rho_0 \frac{\partial p}{\partial t} + k\nu \frac{\partial^2 \epsilon}{\partial t^2} = \gamma_n \frac{\partial \epsilon}{\partial t},
\]

(25)

where \((u_s, v_s)\) is the soil displacements in the horizontal and vertical directions, respectively; \(n\) is soil porosity; \(\sigma_{1s}\) and \(\sigma_{2s}\) are effective normal stresses in the horizontal and vertical directions, respectively; \(\tau_{xy}\) is shear stress; \(p_s\) is pore water pressure; \(\rho_0 = \rho_f + \rho_s (1 - n)\) is average density of porous seabed; \(\rho_f\) is fluid density; \(\rho_s\) is solid density; \(k\) is Darcy’s permeability; \(\nu\) is gravitational acceleration and \(\epsilon\) is the volumetric strain. In Eq. (24), the compressibility of pore fluid (\(\beta\)) and the volume strain (\(\epsilon\)) are defined as:

\[
\beta = \left(\frac{1}{k_f} + \frac{1 - S_r}{p_{sw0}} \right), \quad \epsilon = \frac{\partial u_s}{\partial x} + \frac{\partial v_s}{\partial y},
\]

(26)

where \(S_r\) is the degree of saturation of seabed, \(p_{sw0}\) is the absolute static pressure and \(k_f\) is the bulk modulus of pore water.

The computational domain is a seabed without marine structure truncated from the infinite seabed. The length of computational domain is equal to the wave length. The thickness of seabed is 20 m. The periodical boundary condition is applied to the two lateral sides of seabed; and the bottom of seabed is rigid and impermeable. The water pressure determined by the three-order theory mentioned above is applied to the seabed surface. The properties of seabed are: Young’s modulus \(E = 3.0 \times 10^9\) Pa, Poisson’s ratio \(\nu = 0.33333\), saturation \(S_r = 98\%\), permeability \(k = 1.0 \times 10^{-4}\) m/s, the internal friction angle \(\phi = 35^\circ\), and the cohesion \(c = 0\) for sandy soil. The wave height \(H = 3.0\) m, wave period \(T = 10.0\) s, water depth \(d = 10\) m, the velocity of current \(U_0 = 1.0\) m/s. Accordingly, the wave length \(L\) is determined as 108.13 m. It is noted that the compression is taken as negative in PORO-WSSI II.

3.1. Consolidation

In real offshore environment, the seabed generally has sufficiently experienced the consolidation process in the long-term geological history. There is no excess pore pressure in seabed under the hydrostatic pressure loading only. This final consolidation status should be taken as the initial condition for the thereafter dynamic analysis. Furthermore, the initial geostress, namely the effective stresses \(\sigma_{10}, \sigma_{20}\) and \(\sigma_{30}\) in seabed soil can be determined in this consolidation status.

Fig. 3 shows the distribution of initial geological effective stress \(\sigma_{10}, \sigma_{20}\) and \(\sigma_{30}\) in seabed under hydrostatic pressure (water depth \(d = 10\) m) after the consolidation process finish completely. Due to the fact that there is no marine structure built on seabed, the stress field in the seabed is not affected by external loading. The distribution of initial geological effective stresses in seabed is layered. The horizontal effective stress \(\sigma_{10}, \sigma_{20}\) generally are half of the vertical effective stress \(\sigma_{30}\). The lateral compression coefficient is about \(K_0 = 0.5\) for homogenous and isotropic seabed floor. The pore pressure in seabed is also layered, and there is no excess pore pressure.

3.2. Dynamic response

Taking the initial geological consolidation status as the initial condition, and applying the wave–uniform current induced pressure on seabed to the surface of computational domain, the dynamic response of seabed is calculated by adopting the integrated model PORO-WSSI II. Here, the dynamic seabed response under wave and current loading at time \(t = 30\) s is taken as a representative to illustrate the problem.

Fig. 4 is the wave profile for the wave \((H = 3.0\) m, \(T = 10.0\) s, and \(d = 10.0\) m) and following current \((U_0 = 1.0\) m/s) at time \(t = 30\) s. It is clearly observed that the nonlinear characteristics are obvious for the wave and current interaction. There are fluctuations of the wave profile in the wave troughs. These fluctuations also can be seen in Hsu et al. [7] and Jian et al. [11] when the \(\Delta H \geq 0.2\). The range of seabed chosen as computational domain is \(0 < z < 108.13\) m. It can be found that the part of seabed near to the two lateral sides is applied by the wave crest; meanwhile, the middle part of seabed is applied by the wave trough.

Fig. 5 is the dynamic response of seabed under the wave and uniform current loading at time \(t = 30\) s. As illustrated in Fig. 5, the dynamic pore pressure \(p_{sw}\) is positive, and the dynamic effective stress \(\sigma_{1d}, \sigma_{2d}\) and \(\sigma_{3d}\) are compressive in the part under wave crest; while, the dynamic pore pressure \(p_{swd}\) is negative, and the dynamic effective stress \(\sigma_{1d}, \sigma_{2d}\) and \(\sigma_{3d}\) are tensile in the part under wave trough. Due to the fact that the wave crest downward compresses the seabed, and the wave trough relatively upward pulls the seabed, the seabed under wave trough is more likely to liquefy.

A interesting phenomenon can be observed in Fig. 5 is that it seems that there is a border line at \(z = 18\) m in seabed. The dynamic response of seabed in the zones \(z > 18\) m and \(z < 18\) m is significantly different. The magnitude of dynamic pore pressure in the zone \(z > 18\) m is much greater than that in the zone \(z < 18\) m. There is obvious phase lag for the dynamic response in the zone \(z < 18\) m relative to the dynamic response in the zone \(z > 18\) m. Due to the fact that the wave and current induced liquefaction in seabed would only occur at the seabed surface region, the dynamic response in the zone \(z > 18\) m really need to pay our attention. Fig. 6 more clearly shows the dynamic response in the zone \(z > 18\) m at time \(t = 30\) s.
In order to completely show the dynamic stress field in seabed under wave and current loading, the distribution of shear stress τ_{z0} in seabed is shown in Fig. 7. From Fig. 7, it is found that there is basically no shear stress in the zone $z > 18$ m. The magnitude of shear stress τ_{z0} in seabed is symmetrical along $x = 54.065$ m due to that the wave and current is symmetrical, the seabed and boundary conditions applied are also symmetrical.

3.3. Liquefaction in seabed

As mentioned above, the seabed under wave crest is compressed by the wave–current induced pressure; and the sea water will flow into the seabed driven by the pressure gradient generated due to the phase lag between the pressure acting on seabed and the induced pore pressure in seabed. The induced downward seepage
force make the effective stresses increase. Therefore, it is impossible for the seabed under wave crest to liquefy. However, the situation is completely opposite for the seabed under wave trough. The phase lag between the pressure acting on seabed and the pore pressure in seabed makes the seepage force is upward, which further makes the effective stresses decrease. When the driven force could overcome the initial vertical effective stress \(\sigma'_v\) and the lateral friction force provided by \(\sigma'_f\), the seabed will liquefy. The phase lag induced seepage force in seabed play important role in the analysis of liquefaction of seabed. The seepage force is defined as

\[
j_x = \frac{\partial p_i}{\partial x} \quad \text{and} \quad j_z = \frac{\partial p_i}{\partial z}
\]

and

\[j = \sqrt{j_x^2 + j_z^2}
\]

Fig. 6. The distribution of the wave-current induced effective stresses \(\sigma'_{xd}\), \(\sigma'_{yd}\), \(\sigma'_{zd}\) and the pore pressure in the upper seabed at time \(t=30\) s.

The liquefaction depth (denoted as \(d_d\)) and area (denoted as \(a_d\)) in seabed predicted by criteria A, C and E has relationship: \(d_3 > d_2 > d_1\) and \(a_3 > a_2 > a_1\). This attributes to that the criteria A does not consider the liquefaction prevention provided by the \(\sigma'_v\), \(\sigma'_f\), and the criteria C assumes the internal friction of sandy soil is only \(\phi = 26.6^\circ\). Here, the \(\phi = 35^\circ\) is used for sandy soil in criteria E. It is indicated that the criteria A and C would overestimate the liquefaction depth and area in engineering.

Fig. 7. The distribution of the wave-current induced shear stress \(\tau_{xz}\) in seabed at time \(t=30\) s.

It is clearly observed in **Fig. 9** that the liquefaction depth and area is greatly overestimated by criteria D compared with that predicted by the criteria B. As the analysis in Section 2.2, criteria D just takes the average of initial geological effective stresses as the liquefaction resistance; the physical basis of how the initial horizontal effective stresses \(\sigma'_x, \sigma'_y\) affect the liquefaction resistance is not clear. Criteria F proposed in this study cannot be degenerated to the criteria D. Due to the fact that the average of initial effective stresses is generally less than the initial vertical effective stress, the greatly overestimated liquefaction depth and area predicted by criteria D is undoubtedly expected. In engineering, the liquefaction criteria D is not recommended to use.

Fig. 8. The distribution of seepage force in seabed at time \(t=30\) s. The ‘+’ means upward seepage force; ‘−’ means downward seepage force.

Fig. 8. The distribution pf seepage force in seabed at time \(t=30\) s. The ‘+’ means upward seepage force; ‘−’ means downward seepage force.
observed that the maximum liquefaction depth on line x = 75.0 m is basically the same predicted by the criteria B, C and E; however, the start time and duration of liquefaction on line x = 75.0 m is different. The duration of liquefaction predicted by criteria E is the shortest one.

4. Conclusions

In this study, according to the Mohr–Coulomb principle, the liquefaction criteria considering the cohesion and internal friction angle of soil are proposed based on the effective stress state, and the dynamic loading induced pore pressure in seabed. Through the comparison investigation, following understanding are obtained:

(1) The cohesion and internal friction angle of soil indeed have significant effect on the prediction of liquefaction zone in seabed under dynamic loading. It is necessary to consider the cohesion and internal friction angle when evaluation of the liquefaction potential of soil foundation.

(2) The liquefaction criteria E proposed in this study based on the effective stress state can be degenerated to the 1D liquefaction criteria A proposed by Okusa [16] if the cohesion and friction angle are both neglected. The liquefaction criteria E also can be degenerated to the liquefaction criteria C proposed by Tsai [20] if the cohesion is ignored, and the internal friction angle is assumed as $\phi = 26.6^\circ$. The area and maximum depth of liquefaction zone predicted by liquefaction criteria A, C and E have following relationship: $d_A \geq d_C \geq d_E$. The liquefaction zone predicted by criteria E would be the most accurate one among the three criteria based on the effective stress state. In engineering, the 1D liquefaction criteria A proposed by Okusa [16] also can be used due to that some appropriate safe margin could be left for the structures stability.

(3) The liquefaction criteria F proposed in this study based on the dynamic pore pressure can be degenerated to the 1D liquefaction criteria B proposed by Zen and Yamazaki [26] if the cohesion and internal friction angle of soil are not considered. However, The liquefaction criteria F cannot be degenerated to liquefaction criteria D proposed by Jeng [9]. Therefore, the averaging of the initial effective stresses in the liquefaction criteria D have not physical basis. Additionally, the area and maximum depth of liquefaction zone in seabed is overestimated greatly. It is not recommended to use the liquefaction criteria D in engineering.

(4) Due to the fact that the distribution of initial horizontal effective stresses σ_0^H and σ_0^V in seabed under marine structures...
is generally unknown, the liquefaction criteria F is also not applicable. The 1D criteria proposed by Zen and Yamazaki [26] is recommended to be used in engineering, if the dynamic pore pressure in seabed foundation need to be used.

References